direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary
Aliases: C3×C7⋊C3, C21⋊C3, C7⋊C32, SmallGroup(63,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C7⋊C3 — C3×C7⋊C3 |
C7 — C3×C7⋊C3 |
Generators and relations for C3×C7⋊C3
G = < a,b,c | a3=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >
Character table of C3×C7⋊C3
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 7A | 7B | 21A | 21B | 21C | 21D | |
size | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ9 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ10 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ12 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | complex faithful |
ρ13 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | complex faithful |
ρ14 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | complex faithful |
ρ15 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | complex faithful |
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18)
G:=sub<Sym(21)| (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18)>;
G:=Group( (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18) );
G=PermutationGroup([[(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,8,15),(2,10,19),(3,12,16),(4,14,20),(5,9,17),(6,11,21),(7,13,18)]])
G:=TransitiveGroup(21,7);
C3×C7⋊C3 is a maximal subgroup of
C3⋊F7 C63⋊C3 C63⋊3C3 C7⋊He3
C3×C7⋊C3 is a maximal quotient of C63⋊C3 C63⋊3C3 C21.C32 C7⋊He3
Matrix representation of C3×C7⋊C3 ►in GL4(𝔽43) generated by
6 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 18 | 19 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
6 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 24 | 42 | 42 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(43))| [6,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,18,1,0,0,19,0,1,0,1,0,0],[6,0,0,0,0,1,24,0,0,0,42,1,0,0,42,0] >;
C3×C7⋊C3 in GAP, Magma, Sage, TeX
C_3\times C_7\rtimes C_3
% in TeX
G:=Group("C3xC7:C3");
// GroupNames label
G:=SmallGroup(63,3);
// by ID
G=gap.SmallGroup(63,3);
# by ID
G:=PCGroup([3,-3,-3,-7,164]);
// Polycyclic
G:=Group<a,b,c|a^3=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export
Subgroup lattice of C3×C7⋊C3 in TeX
Character table of C3×C7⋊C3 in TeX