Extensions 1→N→G→Q→1 with N=C2×Dic11 and Q=C2

Direct product G=N×Q with N=C2×Dic11 and Q=C2
dρLabelID
C22×Dic11176C2^2xDic11176,35

Semidirect products G=N:Q with N=C2×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic11)⋊1C2 = D22⋊C4φ: C2/C1C2 ⊆ Out C2×Dic1188(C2xDic11):1C2176,13
(C2×Dic11)⋊2C2 = C23.D11φ: C2/C1C2 ⊆ Out C2×Dic1188(C2xDic11):2C2176,18
(C2×Dic11)⋊3C2 = D42D11φ: C2/C1C2 ⊆ Out C2×Dic11884-(C2xDic11):3C2176,32
(C2×Dic11)⋊4C2 = C2×C11⋊D4φ: C2/C1C2 ⊆ Out C2×Dic1188(C2xDic11):4C2176,36
(C2×Dic11)⋊5C2 = C2×C4×D11φ: trivial image88(C2xDic11):5C2176,28

Non-split extensions G=N.Q with N=C2×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic11).1C2 = Dic11⋊C4φ: C2/C1C2 ⊆ Out C2×Dic11176(C2xDic11).1C2176,11
(C2×Dic11).2C2 = C44⋊C4φ: C2/C1C2 ⊆ Out C2×Dic11176(C2xDic11).2C2176,12
(C2×Dic11).3C2 = C2×Dic22φ: C2/C1C2 ⊆ Out C2×Dic11176(C2xDic11).3C2176,27
(C2×Dic11).4C2 = C4×Dic11φ: trivial image176(C2xDic11).4C2176,10

׿
×
𝔽