direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×Dic11, C22⋊C4, C2.2D22, C22.D11, C22.4C22, C11⋊2(C2×C4), (C2×C22).C2, SmallGroup(88,6)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C2×Dic11 |
Generators and relations for C2×Dic11
G = < a,b,c | a2=b22=1, c2=b11, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Dic11
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 22F | 22G | 22H | 22I | 22J | 22K | 22L | 22M | 22N | 22O | |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | ζ1110+ζ11 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | ζ117+ζ114 | ζ119+ζ112 | -ζ118-ζ113 | ζ118+ζ113 | orthogonal lifted from D22 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | ζ119+ζ112 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | ζ118+ζ113 | ζ117+ζ114 | -ζ116-ζ115 | ζ116+ζ115 | orthogonal lifted from D22 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | ζ116+ζ115 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | ζ119+ζ112 | ζ1110+ζ11 | -ζ117-ζ114 | ζ117+ζ114 | orthogonal lifted from D22 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | ζ117+ζ114 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | ζ116+ζ115 | ζ118+ζ113 | -ζ1110-ζ11 | ζ1110+ζ11 | orthogonal lifted from D22 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | ζ118+ζ113 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | ζ1110+ζ11 | ζ116+ζ115 | -ζ119-ζ112 | ζ119+ζ112 | orthogonal lifted from D22 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ1110-ζ11 | ζ117+ζ114 | -ζ117-ζ114 | symplectic lifted from Dic11, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ117-ζ114 | ζ116+ζ115 | -ζ116-ζ115 | symplectic lifted from Dic11, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ116-ζ115 | ζ119+ζ112 | -ζ119-ζ112 | symplectic lifted from Dic11, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ119-ζ112 | symplectic lifted from Dic11, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ1110-ζ11 | symplectic lifted from Dic11, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ118-ζ113 | symplectic lifted from Dic11, Schur index 2 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ1110-ζ11 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ116-ζ115 | symplectic lifted from Dic11, Schur index 2 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ119-ζ112 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ116-ζ115 | -ζ118-ζ113 | ζ1110+ζ11 | -ζ1110-ζ11 | symplectic lifted from Dic11, Schur index 2 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ118-ζ113 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ117-ζ114 | symplectic lifted from Dic11, Schur index 2 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ116-ζ115 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ117-ζ114 | -ζ119-ζ112 | ζ118+ζ113 | -ζ118-ζ113 | symplectic lifted from Dic11, Schur index 2 |
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(45 78)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 67)(57 68)(58 69)(59 70)(60 71)(61 72)(62 73)(63 74)(64 75)(65 76)(66 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 56 12 45)(2 55 13 66)(3 54 14 65)(4 53 15 64)(5 52 16 63)(6 51 17 62)(7 50 18 61)(8 49 19 60)(9 48 20 59)(10 47 21 58)(11 46 22 57)(23 83 34 72)(24 82 35 71)(25 81 36 70)(26 80 37 69)(27 79 38 68)(28 78 39 67)(29 77 40 88)(30 76 41 87)(31 75 42 86)(32 74 43 85)(33 73 44 84)
G:=sub<Sym(88)| (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,56,12,45)(2,55,13,66)(3,54,14,65)(4,53,15,64)(5,52,16,63)(6,51,17,62)(7,50,18,61)(8,49,19,60)(9,48,20,59)(10,47,21,58)(11,46,22,57)(23,83,34,72)(24,82,35,71)(25,81,36,70)(26,80,37,69)(27,79,38,68)(28,78,39,67)(29,77,40,88)(30,76,41,87)(31,75,42,86)(32,74,43,85)(33,73,44,84)>;
G:=Group( (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,67)(57,68)(58,69)(59,70)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,56,12,45)(2,55,13,66)(3,54,14,65)(4,53,15,64)(5,52,16,63)(6,51,17,62)(7,50,18,61)(8,49,19,60)(9,48,20,59)(10,47,21,58)(11,46,22,57)(23,83,34,72)(24,82,35,71)(25,81,36,70)(26,80,37,69)(27,79,38,68)(28,78,39,67)(29,77,40,88)(30,76,41,87)(31,75,42,86)(32,74,43,85)(33,73,44,84) );
G=PermutationGroup([[(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(45,78),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,67),(57,68),(58,69),(59,70),(60,71),(61,72),(62,73),(63,74),(64,75),(65,76),(66,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,56,12,45),(2,55,13,66),(3,54,14,65),(4,53,15,64),(5,52,16,63),(6,51,17,62),(7,50,18,61),(8,49,19,60),(9,48,20,59),(10,47,21,58),(11,46,22,57),(23,83,34,72),(24,82,35,71),(25,81,36,70),(26,80,37,69),(27,79,38,68),(28,78,39,67),(29,77,40,88),(30,76,41,87),(31,75,42,86),(32,74,43,85),(33,73,44,84)]])
C2×Dic11 is a maximal subgroup of
Dic11⋊C4 C44⋊C4 D22⋊C4 C23.D11 C2×C4×D11 D4⋊2D11
C2×Dic11 is a maximal quotient of C44.C4 C44⋊C4 C23.D11
Matrix representation of C2×Dic11 ►in GL4(𝔽89) generated by
1 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
88 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 88 | 1 |
0 | 0 | 80 | 8 |
34 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 9 | 74 |
0 | 0 | 35 | 80 |
G:=sub<GL(4,GF(89))| [1,0,0,0,0,88,0,0,0,0,1,0,0,0,0,1],[88,0,0,0,0,1,0,0,0,0,88,80,0,0,1,8],[34,0,0,0,0,88,0,0,0,0,9,35,0,0,74,80] >;
C2×Dic11 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_{11}
% in TeX
G:=Group("C2xDic11");
// GroupNames label
G:=SmallGroup(88,6);
// by ID
G=gap.SmallGroup(88,6);
# by ID
G:=PCGroup([4,-2,-2,-2,-11,16,1283]);
// Polycyclic
G:=Group<a,b,c|a^2=b^22=1,c^2=b^11,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Dic11 in TeX
Character table of C2×Dic11 in TeX