Copied to
clipboard

G = C44⋊C4order 176 = 24·11

1st semidirect product of C44 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C441C4, C4⋊Dic11, C2.1D44, C22.4D4, C22.2Q8, C2.2Dic22, C22.5D22, C112(C4⋊C4), C22.8(C2×C4), (C2×C44).3C2, (C2×C4).3D11, (C2×C22).5C22, C2.4(C2×Dic11), (C2×Dic11).2C2, SmallGroup(176,12)

Series: Derived Chief Lower central Upper central

C1C22 — C44⋊C4
C1C11C22C2×C22C2×Dic11 — C44⋊C4
C11C22 — C44⋊C4
C1C22C2×C4

Generators and relations for C44⋊C4
 G = < a,b | a44=b4=1, bab-1=a-1 >

22C4
22C4
11C2×C4
11C2×C4
2Dic11
2Dic11
11C4⋊C4

Smallest permutation representation of C44⋊C4
Regular action on 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 130 170 48)(2 129 171 47)(3 128 172 46)(4 127 173 45)(5 126 174 88)(6 125 175 87)(7 124 176 86)(8 123 133 85)(9 122 134 84)(10 121 135 83)(11 120 136 82)(12 119 137 81)(13 118 138 80)(14 117 139 79)(15 116 140 78)(16 115 141 77)(17 114 142 76)(18 113 143 75)(19 112 144 74)(20 111 145 73)(21 110 146 72)(22 109 147 71)(23 108 148 70)(24 107 149 69)(25 106 150 68)(26 105 151 67)(27 104 152 66)(28 103 153 65)(29 102 154 64)(30 101 155 63)(31 100 156 62)(32 99 157 61)(33 98 158 60)(34 97 159 59)(35 96 160 58)(36 95 161 57)(37 94 162 56)(38 93 163 55)(39 92 164 54)(40 91 165 53)(41 90 166 52)(42 89 167 51)(43 132 168 50)(44 131 169 49)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,130,170,48)(2,129,171,47)(3,128,172,46)(4,127,173,45)(5,126,174,88)(6,125,175,87)(7,124,176,86)(8,123,133,85)(9,122,134,84)(10,121,135,83)(11,120,136,82)(12,119,137,81)(13,118,138,80)(14,117,139,79)(15,116,140,78)(16,115,141,77)(17,114,142,76)(18,113,143,75)(19,112,144,74)(20,111,145,73)(21,110,146,72)(22,109,147,71)(23,108,148,70)(24,107,149,69)(25,106,150,68)(26,105,151,67)(27,104,152,66)(28,103,153,65)(29,102,154,64)(30,101,155,63)(31,100,156,62)(32,99,157,61)(33,98,158,60)(34,97,159,59)(35,96,160,58)(36,95,161,57)(37,94,162,56)(38,93,163,55)(39,92,164,54)(40,91,165,53)(41,90,166,52)(42,89,167,51)(43,132,168,50)(44,131,169,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,130,170,48)(2,129,171,47)(3,128,172,46)(4,127,173,45)(5,126,174,88)(6,125,175,87)(7,124,176,86)(8,123,133,85)(9,122,134,84)(10,121,135,83)(11,120,136,82)(12,119,137,81)(13,118,138,80)(14,117,139,79)(15,116,140,78)(16,115,141,77)(17,114,142,76)(18,113,143,75)(19,112,144,74)(20,111,145,73)(21,110,146,72)(22,109,147,71)(23,108,148,70)(24,107,149,69)(25,106,150,68)(26,105,151,67)(27,104,152,66)(28,103,153,65)(29,102,154,64)(30,101,155,63)(31,100,156,62)(32,99,157,61)(33,98,158,60)(34,97,159,59)(35,96,160,58)(36,95,161,57)(37,94,162,56)(38,93,163,55)(39,92,164,54)(40,91,165,53)(41,90,166,52)(42,89,167,51)(43,132,168,50)(44,131,169,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,130,170,48),(2,129,171,47),(3,128,172,46),(4,127,173,45),(5,126,174,88),(6,125,175,87),(7,124,176,86),(8,123,133,85),(9,122,134,84),(10,121,135,83),(11,120,136,82),(12,119,137,81),(13,118,138,80),(14,117,139,79),(15,116,140,78),(16,115,141,77),(17,114,142,76),(18,113,143,75),(19,112,144,74),(20,111,145,73),(21,110,146,72),(22,109,147,71),(23,108,148,70),(24,107,149,69),(25,106,150,68),(26,105,151,67),(27,104,152,66),(28,103,153,65),(29,102,154,64),(30,101,155,63),(31,100,156,62),(32,99,157,61),(33,98,158,60),(34,97,159,59),(35,96,160,58),(36,95,161,57),(37,94,162,56),(38,93,163,55),(39,92,164,54),(40,91,165,53),(41,90,166,52),(42,89,167,51),(43,132,168,50),(44,131,169,49)]])

C44⋊C4 is a maximal subgroup of
C44.Q8  C4.Dic22  C44.44D4  C44.4Q8  C44.5Q8  C2.D88  D4⋊Dic11  Q8⋊Dic11  C4×Dic22  C442Q8  C44.6Q8  C4×D44  C22⋊Dic22  C23.D22  D22.D4  C22.D44  C44⋊Q8  Dic11.Q8  C44.3Q8  C4⋊C4×D11  C4⋊C47D11  D222Q8  C4⋊C4⋊D11  C44.48D4  C23.21D22  C447D4  D4×Dic11  C442D4  Q8×Dic11  D223Q8
C44⋊C4 is a maximal quotient of
C44⋊C8  C44.4Q8  C44.5Q8  C88.C4  C22.C42

50 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F11A···11E22A···22O44A···44T
order122244444411···1122···2244···44
size111122222222222···22···22···2

50 irreducible representations

dim11112222222
type++++-+-+-+
imageC1C2C2C4D4Q8D11Dic11D22Dic22D44
kernelC44⋊C4C2×Dic11C2×C44C44C22C22C2×C4C4C22C2C2
# reps12141151051010

Matrix representation of C44⋊C4 in GL4(𝔽89) generated by

348700
21300
001473
00255
,
236300
826600
00841
001881
G:=sub<GL(4,GF(89))| [34,2,0,0,87,13,0,0,0,0,14,2,0,0,73,55],[23,82,0,0,63,66,0,0,0,0,8,18,0,0,41,81] >;

C44⋊C4 in GAP, Magma, Sage, TeX

C_{44}\rtimes C_4
% in TeX

G:=Group("C44:C4");
// GroupNames label

G:=SmallGroup(176,12);
// by ID

G=gap.SmallGroup(176,12);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,20,101,46,4004]);
// Polycyclic

G:=Group<a,b|a^44=b^4=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C44⋊C4 in TeX

׿
×
𝔽