direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×Dic11, C11⋊C42, C44⋊2C4, C22.3D22, C22.3(C2×C4), (C2×C44).7C2, (C2×C4).6D11, C2.2(C4×D11), (C2×C22).3C22, C2.2(C2×Dic11), (C2×Dic11).4C2, SmallGroup(176,10)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C4×Dic11 |
Generators and relations for C4×Dic11
G = < a,b,c | a4=b22=1, c2=b11, ab=ba, ac=ca, cbc-1=b-1 >
(1 105 145 171)(2 106 146 172)(3 107 147 173)(4 108 148 174)(5 109 149 175)(6 110 150 176)(7 89 151 155)(8 90 152 156)(9 91 153 157)(10 92 154 158)(11 93 133 159)(12 94 134 160)(13 95 135 161)(14 96 136 162)(15 97 137 163)(16 98 138 164)(17 99 139 165)(18 100 140 166)(19 101 141 167)(20 102 142 168)(21 103 143 169)(22 104 144 170)(23 120 67 65)(24 121 68 66)(25 122 69 45)(26 123 70 46)(27 124 71 47)(28 125 72 48)(29 126 73 49)(30 127 74 50)(31 128 75 51)(32 129 76 52)(33 130 77 53)(34 131 78 54)(35 132 79 55)(36 111 80 56)(37 112 81 57)(38 113 82 58)(39 114 83 59)(40 115 84 60)(41 116 85 61)(42 117 86 62)(43 118 87 63)(44 119 88 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 127 12 116)(2 126 13 115)(3 125 14 114)(4 124 15 113)(5 123 16 112)(6 122 17 111)(7 121 18 132)(8 120 19 131)(9 119 20 130)(10 118 21 129)(11 117 22 128)(23 167 34 156)(24 166 35 155)(25 165 36 176)(26 164 37 175)(27 163 38 174)(28 162 39 173)(29 161 40 172)(30 160 41 171)(31 159 42 170)(32 158 43 169)(33 157 44 168)(45 139 56 150)(46 138 57 149)(47 137 58 148)(48 136 59 147)(49 135 60 146)(50 134 61 145)(51 133 62 144)(52 154 63 143)(53 153 64 142)(54 152 65 141)(55 151 66 140)(67 101 78 90)(68 100 79 89)(69 99 80 110)(70 98 81 109)(71 97 82 108)(72 96 83 107)(73 95 84 106)(74 94 85 105)(75 93 86 104)(76 92 87 103)(77 91 88 102)
G:=sub<Sym(176)| (1,105,145,171)(2,106,146,172)(3,107,147,173)(4,108,148,174)(5,109,149,175)(6,110,150,176)(7,89,151,155)(8,90,152,156)(9,91,153,157)(10,92,154,158)(11,93,133,159)(12,94,134,160)(13,95,135,161)(14,96,136,162)(15,97,137,163)(16,98,138,164)(17,99,139,165)(18,100,140,166)(19,101,141,167)(20,102,142,168)(21,103,143,169)(22,104,144,170)(23,120,67,65)(24,121,68,66)(25,122,69,45)(26,123,70,46)(27,124,71,47)(28,125,72,48)(29,126,73,49)(30,127,74,50)(31,128,75,51)(32,129,76,52)(33,130,77,53)(34,131,78,54)(35,132,79,55)(36,111,80,56)(37,112,81,57)(38,113,82,58)(39,114,83,59)(40,115,84,60)(41,116,85,61)(42,117,86,62)(43,118,87,63)(44,119,88,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,127,12,116)(2,126,13,115)(3,125,14,114)(4,124,15,113)(5,123,16,112)(6,122,17,111)(7,121,18,132)(8,120,19,131)(9,119,20,130)(10,118,21,129)(11,117,22,128)(23,167,34,156)(24,166,35,155)(25,165,36,176)(26,164,37,175)(27,163,38,174)(28,162,39,173)(29,161,40,172)(30,160,41,171)(31,159,42,170)(32,158,43,169)(33,157,44,168)(45,139,56,150)(46,138,57,149)(47,137,58,148)(48,136,59,147)(49,135,60,146)(50,134,61,145)(51,133,62,144)(52,154,63,143)(53,153,64,142)(54,152,65,141)(55,151,66,140)(67,101,78,90)(68,100,79,89)(69,99,80,110)(70,98,81,109)(71,97,82,108)(72,96,83,107)(73,95,84,106)(74,94,85,105)(75,93,86,104)(76,92,87,103)(77,91,88,102)>;
G:=Group( (1,105,145,171)(2,106,146,172)(3,107,147,173)(4,108,148,174)(5,109,149,175)(6,110,150,176)(7,89,151,155)(8,90,152,156)(9,91,153,157)(10,92,154,158)(11,93,133,159)(12,94,134,160)(13,95,135,161)(14,96,136,162)(15,97,137,163)(16,98,138,164)(17,99,139,165)(18,100,140,166)(19,101,141,167)(20,102,142,168)(21,103,143,169)(22,104,144,170)(23,120,67,65)(24,121,68,66)(25,122,69,45)(26,123,70,46)(27,124,71,47)(28,125,72,48)(29,126,73,49)(30,127,74,50)(31,128,75,51)(32,129,76,52)(33,130,77,53)(34,131,78,54)(35,132,79,55)(36,111,80,56)(37,112,81,57)(38,113,82,58)(39,114,83,59)(40,115,84,60)(41,116,85,61)(42,117,86,62)(43,118,87,63)(44,119,88,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,127,12,116)(2,126,13,115)(3,125,14,114)(4,124,15,113)(5,123,16,112)(6,122,17,111)(7,121,18,132)(8,120,19,131)(9,119,20,130)(10,118,21,129)(11,117,22,128)(23,167,34,156)(24,166,35,155)(25,165,36,176)(26,164,37,175)(27,163,38,174)(28,162,39,173)(29,161,40,172)(30,160,41,171)(31,159,42,170)(32,158,43,169)(33,157,44,168)(45,139,56,150)(46,138,57,149)(47,137,58,148)(48,136,59,147)(49,135,60,146)(50,134,61,145)(51,133,62,144)(52,154,63,143)(53,153,64,142)(54,152,65,141)(55,151,66,140)(67,101,78,90)(68,100,79,89)(69,99,80,110)(70,98,81,109)(71,97,82,108)(72,96,83,107)(73,95,84,106)(74,94,85,105)(75,93,86,104)(76,92,87,103)(77,91,88,102) );
G=PermutationGroup([[(1,105,145,171),(2,106,146,172),(3,107,147,173),(4,108,148,174),(5,109,149,175),(6,110,150,176),(7,89,151,155),(8,90,152,156),(9,91,153,157),(10,92,154,158),(11,93,133,159),(12,94,134,160),(13,95,135,161),(14,96,136,162),(15,97,137,163),(16,98,138,164),(17,99,139,165),(18,100,140,166),(19,101,141,167),(20,102,142,168),(21,103,143,169),(22,104,144,170),(23,120,67,65),(24,121,68,66),(25,122,69,45),(26,123,70,46),(27,124,71,47),(28,125,72,48),(29,126,73,49),(30,127,74,50),(31,128,75,51),(32,129,76,52),(33,130,77,53),(34,131,78,54),(35,132,79,55),(36,111,80,56),(37,112,81,57),(38,113,82,58),(39,114,83,59),(40,115,84,60),(41,116,85,61),(42,117,86,62),(43,118,87,63),(44,119,88,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,127,12,116),(2,126,13,115),(3,125,14,114),(4,124,15,113),(5,123,16,112),(6,122,17,111),(7,121,18,132),(8,120,19,131),(9,119,20,130),(10,118,21,129),(11,117,22,128),(23,167,34,156),(24,166,35,155),(25,165,36,176),(26,164,37,175),(27,163,38,174),(28,162,39,173),(29,161,40,172),(30,160,41,171),(31,159,42,170),(32,158,43,169),(33,157,44,168),(45,139,56,150),(46,138,57,149),(47,137,58,148),(48,136,59,147),(49,135,60,146),(50,134,61,145),(51,133,62,144),(52,154,63,143),(53,153,64,142),(54,152,65,141),(55,151,66,140),(67,101,78,90),(68,100,79,89),(69,99,80,110),(70,98,81,109),(71,97,82,108),(72,96,83,107),(73,95,84,106),(74,94,85,105),(75,93,86,104),(76,92,87,103),(77,91,88,102)]])
C4×Dic11 is a maximal subgroup of
Dic11⋊C8 C88⋊C4 D44⋊4C4 C44.56D4 C42×D11 C42⋊D11 C23.11D22 C23.D22 Dic11⋊4D4 Dic11.D4 Dic22⋊C4 C44⋊Q8 Dic11.Q8 C44.3Q8 C4⋊C4⋊7D11 D44⋊C4 C4⋊C4⋊D11 C23.21D22 C44.17D4 C44⋊D4 Dic11⋊Q8 C44.23D4
C4×Dic11 is a maximal quotient of
C42.D11 C88⋊C4 C22.C42
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 11A | ··· | 11E | 22A | ··· | 22O | 44A | ··· | 44T |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 11 | ··· | 11 | 22 | ··· | 22 | 44 | ··· | 44 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | ··· | 11 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C4 | C4 | D11 | Dic11 | D22 | C4×D11 |
kernel | C4×Dic11 | C2×Dic11 | C2×C44 | Dic11 | C44 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 8 | 4 | 5 | 10 | 5 | 20 |
Matrix representation of C4×Dic11 ►in GL4(𝔽89) generated by
34 | 0 | 0 | 0 |
0 | 55 | 0 | 0 |
0 | 0 | 88 | 0 |
0 | 0 | 0 | 88 |
88 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 88 | 1 |
0 | 0 | 80 | 8 |
34 | 0 | 0 | 0 |
0 | 88 | 0 | 0 |
0 | 0 | 65 | 13 |
0 | 0 | 79 | 24 |
G:=sub<GL(4,GF(89))| [34,0,0,0,0,55,0,0,0,0,88,0,0,0,0,88],[88,0,0,0,0,1,0,0,0,0,88,80,0,0,1,8],[34,0,0,0,0,88,0,0,0,0,65,79,0,0,13,24] >;
C4×Dic11 in GAP, Magma, Sage, TeX
C_4\times {\rm Dic}_{11}
% in TeX
G:=Group("C4xDic11");
// GroupNames label
G:=SmallGroup(176,10);
// by ID
G=gap.SmallGroup(176,10);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-11,20,46,4004]);
// Polycyclic
G:=Group<a,b,c|a^4=b^22=1,c^2=b^11,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export