Extensions 1→N→G→Q→1 with N=Q8 and Q=C2×Dic3

Direct product G=N×Q with N=Q8 and Q=C2×Dic3
dρLabelID
C2×Q8×Dic3192C2xQ8xDic3192,1370

Semidirect products G=N:Q with N=Q8 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
Q8⋊(C2×Dic3) = C2×Q8⋊Dic3φ: C2×Dic3/C22S3 ⊆ Out Q864Q8:(C2xDic3)192,977
Q82(C2×Dic3) = Dic3×SD16φ: C2×Dic3/Dic3C2 ⊆ Out Q896Q8:2(C2xDic3)192,720
Q83(C2×Dic3) = SD16⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Q896Q8:3(C2xDic3)192,723
Q84(C2×Dic3) = C2×Q82Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Q8192Q8:4(C2xDic3)192,783
Q85(C2×Dic3) = C4○D43Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Q896Q8:5(C2xDic3)192,791
Q86(C2×Dic3) = C2×Q83Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Q848Q8:6(C2xDic3)192,794
Q87(C2×Dic3) = Dic3×C4○D4φ: trivial image96Q8:7(C2xDic3)192,1385
Q88(C2×Dic3) = C6.1442+ 1+4φ: trivial image96Q8:8(C2xDic3)192,1386

Non-split extensions G=N.Q with N=Q8 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
Q8.1(C2×Dic3) = C23.15S4φ: C2×Dic3/C22S3 ⊆ Out Q832Q8.1(C2xDic3)192,979
Q8.2(C2×Dic3) = C2×U2(𝔽3)φ: C2×Dic3/C22S3 ⊆ Out Q848Q8.2(C2xDic3)192,981
Q8.3(C2×Dic3) = U2(𝔽3)⋊C2φ: C2×Dic3/C22S3 ⊆ Out Q8324Q8.3(C2xDic3)192,982
Q8.4(C2×Dic3) = C4.A4⋊C4φ: C2×Dic3/C22S3 ⊆ Out Q864Q8.4(C2xDic3)192,983
Q8.5(C2×Dic3) = (C2×C4).S4φ: C2×Dic3/C22S3 ⊆ Out Q864Q8.5(C2xDic3)192,985
Q8.6(C2×Dic3) = Dic3×Q16φ: C2×Dic3/Dic3C2 ⊆ Out Q8192Q8.6(C2xDic3)192,740
Q8.7(C2×Dic3) = Q16⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Q8192Q8.7(C2xDic3)192,743
Q8.8(C2×Dic3) = D85Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Q8484Q8.8(C2xDic3)192,755
Q8.9(C2×Dic3) = D84Dic3φ: C2×Dic3/Dic3C2 ⊆ Out Q8484Q8.9(C2xDic3)192,756
Q8.10(C2×Dic3) = (C6×Q8)⋊6C4φ: C2×Dic3/C2×C6C2 ⊆ Out Q896Q8.10(C2xDic3)192,784
Q8.11(C2×Dic3) = C4○D44Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out Q896Q8.11(C2xDic3)192,792
Q8.12(C2×Dic3) = (C6×D4)⋊9C4φ: C2×Dic3/C2×C6C2 ⊆ Out Q8484Q8.12(C2xDic3)192,795
Q8.13(C2×Dic3) = C6.422- 1+4φ: trivial image96Q8.13(C2xDic3)192,1371
Q8.14(C2×Dic3) = C2×D4.Dic3φ: trivial image96Q8.14(C2xDic3)192,1377
Q8.15(C2×Dic3) = C12.76C24φ: trivial image484Q8.15(C2xDic3)192,1378

׿
×
𝔽