Extensions 1→N→G→Q→1 with N=Q8 and Q=C2xDic3

Direct product G=NxQ with N=Q8 and Q=C2xDic3
dρLabelID
C2xQ8xDic3192C2xQ8xDic3192,1370

Semidirect products G=N:Q with N=Q8 and Q=C2xDic3
extensionφ:Q→Out NdρLabelID
Q8:(C2xDic3) = C2xQ8:Dic3φ: C2xDic3/C22S3 ⊆ Out Q864Q8:(C2xDic3)192,977
Q8:2(C2xDic3) = Dic3xSD16φ: C2xDic3/Dic3C2 ⊆ Out Q896Q8:2(C2xDic3)192,720
Q8:3(C2xDic3) = SD16:Dic3φ: C2xDic3/Dic3C2 ⊆ Out Q896Q8:3(C2xDic3)192,723
Q8:4(C2xDic3) = C2xQ8:2Dic3φ: C2xDic3/C2xC6C2 ⊆ Out Q8192Q8:4(C2xDic3)192,783
Q8:5(C2xDic3) = C4oD4:3Dic3φ: C2xDic3/C2xC6C2 ⊆ Out Q896Q8:5(C2xDic3)192,791
Q8:6(C2xDic3) = C2xQ8:3Dic3φ: C2xDic3/C2xC6C2 ⊆ Out Q848Q8:6(C2xDic3)192,794
Q8:7(C2xDic3) = Dic3xC4oD4φ: trivial image96Q8:7(C2xDic3)192,1385
Q8:8(C2xDic3) = C6.1442+ 1+4φ: trivial image96Q8:8(C2xDic3)192,1386

Non-split extensions G=N.Q with N=Q8 and Q=C2xDic3
extensionφ:Q→Out NdρLabelID
Q8.1(C2xDic3) = C23.15S4φ: C2xDic3/C22S3 ⊆ Out Q832Q8.1(C2xDic3)192,979
Q8.2(C2xDic3) = C2xU2(F3)φ: C2xDic3/C22S3 ⊆ Out Q848Q8.2(C2xDic3)192,981
Q8.3(C2xDic3) = U2(F3):C2φ: C2xDic3/C22S3 ⊆ Out Q8324Q8.3(C2xDic3)192,982
Q8.4(C2xDic3) = C4.A4:C4φ: C2xDic3/C22S3 ⊆ Out Q864Q8.4(C2xDic3)192,983
Q8.5(C2xDic3) = (C2xC4).S4φ: C2xDic3/C22S3 ⊆ Out Q864Q8.5(C2xDic3)192,985
Q8.6(C2xDic3) = Dic3xQ16φ: C2xDic3/Dic3C2 ⊆ Out Q8192Q8.6(C2xDic3)192,740
Q8.7(C2xDic3) = Q16:Dic3φ: C2xDic3/Dic3C2 ⊆ Out Q8192Q8.7(C2xDic3)192,743
Q8.8(C2xDic3) = D8:5Dic3φ: C2xDic3/Dic3C2 ⊆ Out Q8484Q8.8(C2xDic3)192,755
Q8.9(C2xDic3) = D8:4Dic3φ: C2xDic3/Dic3C2 ⊆ Out Q8484Q8.9(C2xDic3)192,756
Q8.10(C2xDic3) = (C6xQ8):6C4φ: C2xDic3/C2xC6C2 ⊆ Out Q896Q8.10(C2xDic3)192,784
Q8.11(C2xDic3) = C4oD4:4Dic3φ: C2xDic3/C2xC6C2 ⊆ Out Q896Q8.11(C2xDic3)192,792
Q8.12(C2xDic3) = (C6xD4):9C4φ: C2xDic3/C2xC6C2 ⊆ Out Q8484Q8.12(C2xDic3)192,795
Q8.13(C2xDic3) = C6.422- 1+4φ: trivial image96Q8.13(C2xDic3)192,1371
Q8.14(C2xDic3) = C2xD4.Dic3φ: trivial image96Q8.14(C2xDic3)192,1377
Q8.15(C2xDic3) = C12.76C24φ: trivial image484Q8.15(C2xDic3)192,1378

׿
x
:
Z
F
o
wr
Q
<