metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8⋊5Dic3, Q16⋊5Dic3, SD16⋊3Dic3, (C3×D8)⋊3C4, C3⋊5(C8○D8), C3⋊C8.23D4, (C3×Q16)⋊3C4, C4○D8.5S3, C6.99(C4×D4), C24.20(C2×C4), C4○D4.38D6, (C8×Dic3)⋊2C2, (C3×SD16)⋊4C4, (C2×C8).254D6, C4.217(S3×D4), C24.C4⋊8C2, C12.376(C2×D4), D4.Dic3⋊3C2, Q8.8(C2×Dic3), D4.3(C2×Dic3), C8.11(C2×Dic3), C2.16(D4×Dic3), Q8⋊3Dic3⋊4C2, C12.77(C22×C4), (C2×C24).44C22, C4.7(C22×Dic3), (C2×C12).467C23, C22.3(D4⋊2S3), C4.Dic3.22C22, (C4×Dic3).246C22, (C3×C4○D8).2C2, (C3×D4).10(C2×C4), (C3×Q8).10(C2×C4), (C2×C6).11(C4○D4), (C2×C3⋊C8).280C22, (C3×C4○D4).9C22, (C2×C4).554(C22×S3), SmallGroup(192,755)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8⋊5Dic3
G = < a,b,c,d | a8=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, cbc-1=a4b, dbd-1=a2b, dcd-1=c-1 >
Subgroups: 216 in 106 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Dic3, C12, C12, C2×C6, C2×C6, C42, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C4○D4, C3⋊C8, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, C2×C3⋊C8, C2×C3⋊C8, C4.Dic3, C4.Dic3, C4×Dic3, C2×C24, C3×D8, C3×SD16, C3×Q16, C3×C4○D4, C8○D8, C8×Dic3, C24.C4, Q8⋊3Dic3, D4.Dic3, C3×C4○D8, D8⋊5Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22×C4, C2×D4, C4○D4, C2×Dic3, C22×S3, C4×D4, S3×D4, D4⋊2S3, C22×Dic3, C8○D8, D4×Dic3, D8⋊5Dic3
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 35)(10 34)(11 33)(12 40)(13 39)(14 38)(15 37)(16 36)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
(1 46 40)(2 47 33)(3 48 34)(4 41 35)(5 42 36)(6 43 37)(7 44 38)(8 45 39)(9 24 26 13 20 30)(10 17 27 14 21 31)(11 18 28 15 22 32)(12 19 29 16 23 25)
(1 5)(2 6)(3 7)(4 8)(9 32 13 28)(10 25 14 29)(11 26 15 30)(12 27 16 31)(17 23 21 19)(18 24 22 20)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (1,5)(2,6)(3,7)(4,8)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31)(17,23,21,19)(18,24,22,20)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (1,5)(2,6)(3,7)(4,8)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31)(17,23,21,19)(18,24,22,20)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,35),(10,34),(11,33),(12,40),(13,39),(14,38),(15,37),(16,36),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)], [(1,46,40),(2,47,33),(3,48,34),(4,41,35),(5,42,36),(6,43,37),(7,44,38),(8,45,39),(9,24,26,13,20,30),(10,17,27,14,21,31),(11,18,28,15,22,32),(12,19,29,16,23,25)], [(1,5),(2,6),(3,7),(4,8),(9,32,13,28),(10,25,14,29),(11,26,15,30),(12,27,16,31),(17,23,21,19),(18,24,22,20),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 2 | 4 | 4 | 2 | 1 | 1 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | - | - | + | + | - | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | D6 | Dic3 | Dic3 | Dic3 | D6 | C4○D4 | C8○D8 | S3×D4 | D4⋊2S3 | D8⋊5Dic3 |
kernel | D8⋊5Dic3 | C8×Dic3 | C24.C4 | Q8⋊3Dic3 | D4.Dic3 | C3×C4○D8 | C3×D8 | C3×SD16 | C3×Q16 | C4○D8 | C3⋊C8 | C2×C8 | D8 | SD16 | Q16 | C4○D4 | C2×C6 | C3 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 8 | 1 | 1 | 4 |
Matrix representation of D8⋊5Dic3 ►in GL4(𝔽73) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 51 | 0 |
0 | 0 | 0 | 63 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 0 | 63 |
0 | 0 | 51 | 0 |
0 | 1 | 0 | 0 |
72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 |
72 | 72 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 46 |
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,51,0,0,0,0,63],[72,0,0,0,0,72,0,0,0,0,0,51,0,0,63,0],[0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,72],[1,72,0,0,0,72,0,0,0,0,72,0,0,0,0,46] >;
D8⋊5Dic3 in GAP, Magma, Sage, TeX
D_8\rtimes_5{\rm Dic}_3
% in TeX
G:=Group("D8:5Dic3");
// GroupNames label
G:=SmallGroup(192,755);
// by ID
G=gap.SmallGroup(192,755);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,219,136,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations