direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Q8⋊3Dic3, C6⋊3C4≀C2, (C6×D4)⋊8C4, (C6×Q8)⋊8C4, C4○D4⋊5Dic3, C4○D4.52D6, (C2×D4)⋊8Dic3, (C2×Q8)⋊8Dic3, Q8⋊6(C2×Dic3), D4⋊5(C2×Dic3), C12.452(C2×D4), (C2×C12).197D4, C12.85(C22×C4), (C22×C4).373D6, (C22×C6).113D4, C12.99(C22⋊C4), (C2×C12).481C23, (C4×Dic3)⋊63C22, C23.73(C3⋊D4), C4.Dic3⋊23C22, C4.15(C22×Dic3), C4.33(C6.D4), (C22×C12).207C22, C22.5(C6.D4), C3⋊4(C2×C4≀C2), (C3×C4○D4)⋊3C4, (C2×C4×Dic3)⋊4C2, (C3×D4)⋊18(C2×C4), (C3×Q8)⋊17(C2×C4), (C6×C4○D4).4C2, (C2×C6).39(C2×D4), (C2×C4○D4).10S3, C4.143(C2×C3⋊D4), C6.84(C2×C22⋊C4), (C2×C12).125(C2×C4), (C2×C4.Dic3)⋊21C2, (C2×C4).54(C2×Dic3), C22.11(C2×C3⋊D4), (C2×C4).282(C3⋊D4), (C2×C4).566(C22×S3), C2.20(C2×C6.D4), (C3×C4○D4).41C22, (C2×C6).117(C22⋊C4), SmallGroup(192,794)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Q8⋊3Dic3
G = < a,b,c,d,e | a2=b4=d6=1, c2=b2, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=b2c, ece-1=b-1c, ede-1=d-1 >
Subgroups: 360 in 170 conjugacy classes, 71 normal (43 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C4≀C2, C2×C42, C2×M4(2), C2×C4○D4, C2×C3⋊C8, C4.Dic3, C4.Dic3, C4×Dic3, C4×Dic3, C22×Dic3, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, C2×C4≀C2, Q8⋊3Dic3, C2×C4.Dic3, C2×C4×Dic3, C6×C4○D4, C2×Q8⋊3Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C4≀C2, C2×C22⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C2×C4≀C2, Q8⋊3Dic3, C2×C6.D4, C2×Q8⋊3Dic3
(1 19)(2 20)(3 21)(4 18)(5 16)(6 17)(7 14)(8 15)(9 13)(10 23)(11 24)(12 22)(25 44)(26 45)(27 46)(28 47)(29 48)(30 43)(31 40)(32 41)(33 42)(34 37)(35 38)(36 39)
(1 5 12 9)(2 6 10 7)(3 4 11 8)(13 19 16 22)(14 20 17 23)(15 21 18 24)(25 41 28 38)(26 42 29 39)(27 37 30 40)(31 46 34 43)(32 47 35 44)(33 48 36 45)
(1 39 12 42)(2 37 10 40)(3 41 11 38)(4 25 8 28)(5 29 9 26)(6 27 7 30)(13 45 16 48)(14 43 17 46)(15 47 18 44)(19 36 22 33)(20 34 23 31)(21 32 24 35)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(2 3)(4 6)(7 8)(10 11)(14 15)(17 18)(20 21)(23 24)(25 40 28 37)(26 39 29 42)(27 38 30 41)(31 47 34 44)(32 46 35 43)(33 45 36 48)
G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,18)(5,16)(6,17)(7,14)(8,15)(9,13)(10,23)(11,24)(12,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,40)(32,41)(33,42)(34,37)(35,38)(36,39), (1,5,12,9)(2,6,10,7)(3,4,11,8)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,41,28,38)(26,42,29,39)(27,37,30,40)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,39,12,42)(2,37,10,40)(3,41,11,38)(4,25,8,28)(5,29,9,26)(6,27,7,30)(13,45,16,48)(14,43,17,46)(15,47,18,44)(19,36,22,33)(20,34,23,31)(21,32,24,35), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (2,3)(4,6)(7,8)(10,11)(14,15)(17,18)(20,21)(23,24)(25,40,28,37)(26,39,29,42)(27,38,30,41)(31,47,34,44)(32,46,35,43)(33,45,36,48)>;
G:=Group( (1,19)(2,20)(3,21)(4,18)(5,16)(6,17)(7,14)(8,15)(9,13)(10,23)(11,24)(12,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,40)(32,41)(33,42)(34,37)(35,38)(36,39), (1,5,12,9)(2,6,10,7)(3,4,11,8)(13,19,16,22)(14,20,17,23)(15,21,18,24)(25,41,28,38)(26,42,29,39)(27,37,30,40)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,39,12,42)(2,37,10,40)(3,41,11,38)(4,25,8,28)(5,29,9,26)(6,27,7,30)(13,45,16,48)(14,43,17,46)(15,47,18,44)(19,36,22,33)(20,34,23,31)(21,32,24,35), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (2,3)(4,6)(7,8)(10,11)(14,15)(17,18)(20,21)(23,24)(25,40,28,37)(26,39,29,42)(27,38,30,41)(31,47,34,44)(32,46,35,43)(33,45,36,48) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,18),(5,16),(6,17),(7,14),(8,15),(9,13),(10,23),(11,24),(12,22),(25,44),(26,45),(27,46),(28,47),(29,48),(30,43),(31,40),(32,41),(33,42),(34,37),(35,38),(36,39)], [(1,5,12,9),(2,6,10,7),(3,4,11,8),(13,19,16,22),(14,20,17,23),(15,21,18,24),(25,41,28,38),(26,42,29,39),(27,37,30,40),(31,46,34,43),(32,47,35,44),(33,48,36,45)], [(1,39,12,42),(2,37,10,40),(3,41,11,38),(4,25,8,28),(5,29,9,26),(6,27,7,30),(13,45,16,48),(14,43,17,46),(15,47,18,44),(19,36,22,33),(20,34,23,31),(21,32,24,35)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(2,3),(4,6),(7,8),(10,11),(14,15),(17,18),(20,21),(23,24),(25,40,28,37),(26,39,29,42),(27,38,30,41),(31,47,34,44),(32,46,35,43),(33,45,36,48)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4P | 6A | 6B | 6C | 6D | ··· | 6I | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 6 | ··· | 6 | 2 | 2 | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - | - | - | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | D4 | D6 | Dic3 | Dic3 | Dic3 | D6 | C3⋊D4 | C3⋊D4 | C4≀C2 | Q8⋊3Dic3 |
kernel | C2×Q8⋊3Dic3 | Q8⋊3Dic3 | C2×C4.Dic3 | C2×C4×Dic3 | C6×C4○D4 | C6×D4 | C6×Q8 | C3×C4○D4 | C2×C4○D4 | C2×C12 | C22×C6 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | C4○D4 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 2 | 8 | 4 |
Matrix representation of C2×Q8⋊3Dic3 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 46 | 27 | 0 | 0 |
0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 |
0 | 54 | 46 | 0 | 0 |
0 | 0 | 0 | 43 | 13 |
0 | 0 | 0 | 60 | 30 |
72 | 0 | 0 | 0 | 0 |
0 | 72 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 1 | 0 |
27 | 0 | 0 | 0 | 0 |
0 | 27 | 60 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 1 | 1 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,46,0,0,0,0,27,27,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,27,54,0,0,0,0,46,0,0,0,0,0,43,60,0,0,0,13,30],[72,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,72,1,0,0,0,72,0],[27,0,0,0,0,0,27,0,0,0,0,60,1,0,0,0,0,0,72,1,0,0,0,0,1] >;
C2×Q8⋊3Dic3 in GAP, Magma, Sage, TeX
C_2\times Q_8\rtimes_3{\rm Dic}_3
% in TeX
G:=Group("C2xQ8:3Dic3");
// GroupNames label
G:=SmallGroup(192,794);
// by ID
G=gap.SmallGroup(192,794);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,422,136,1684,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^6=1,c^2=b^2,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^2*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^-1>;
// generators/relations