Copied to
clipboard

G = D8:4Dic3order 192 = 26·3

4th semidirect product of D8 and Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:4Dic3, Q16:4Dic3, SD16:2Dic3, (C3xD8):6C4, C3:C8.36D4, (C3xQ16):6C4, C4oD8.4S3, C24:C4:2C2, C3:5(C8.26D4), C24.31(C2xC4), C4oD4.39D6, (C3xSD16):2C4, C6.100(C4xD4), C4.218(S3xD4), (C2xC8).100D6, C24.C4:9C2, C8.6(C2xDic3), C12.377(C2xD4), D4.Dic3:4C2, D4.4(C2xDic3), Q8.9(C2xDic3), C2.17(D4xDic3), Q8:3Dic3:5C2, (C2xC24).45C22, C12.78(C22xC4), C4.8(C22xDic3), (C2xC12).468C23, C22.4(D4:2S3), (C4xDic3).57C22, C4.Dic3.23C22, (C3xC4oD8).3C2, (C3xD4).11(C2xC4), (C3xQ8).11(C2xC4), (C2xC6).12(C4oD4), (C2xC3:C8).169C22, (C2xC4).555(C22xS3), (C3xC4oD4).10C22, SmallGroup(192,756)

Series: Derived Chief Lower central Upper central

C1C12 — D8:4Dic3
C1C3C6C12C2xC12C2xC3:C8D4.Dic3 — D8:4Dic3
C3C6C12 — D8:4Dic3
C1C4C2xC4C4oD8

Generators and relations for D8:4Dic3
 G = < a,b,c,d | a8=b2=c6=1, d2=c3, bab=a-1, ac=ca, dad-1=a5, cbc-1=a4b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 216 in 104 conjugacy classes, 53 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Dic3, C12, C12, C2xC6, C2xC6, C42, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C4oD4, C3:C8, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C8:C4, C4wrC2, C8.C4, C8oD4, C4oD8, C2xC3:C8, C2xC3:C8, C4.Dic3, C4.Dic3, C4xDic3, C2xC24, C3xD8, C3xSD16, C3xQ16, C3xC4oD4, C8.26D4, C24:C4, C24.C4, Q8:3Dic3, D4.Dic3, C3xC4oD8, D8:4Dic3
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, Dic3, D6, C22xC4, C2xD4, C4oD4, C2xDic3, C22xS3, C4xD4, S3xD4, D4:2S3, C22xDic3, C8.26D4, D4xDic3, D8:4Dic3

Smallest permutation representation of D8:4Dic3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 35)(10 34)(11 33)(12 40)(13 39)(14 38)(15 37)(16 36)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
(1 46 40)(2 47 33)(3 48 34)(4 41 35)(5 42 36)(6 43 37)(7 44 38)(8 45 39)(9 24 26 13 20 30)(10 17 27 14 21 31)(11 18 28 15 22 32)(12 19 29 16 23 25)
(2 6)(4 8)(9 32 13 28)(10 29 14 25)(11 26 15 30)(12 31 16 27)(17 19 21 23)(18 24 22 20)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (2,6)(4,8)(9,32,13,28)(10,29,14,25)(11,26,15,30)(12,31,16,27)(17,19,21,23)(18,24,22,20)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (2,6)(4,8)(9,32,13,28)(10,29,14,25)(11,26,15,30)(12,31,16,27)(17,19,21,23)(18,24,22,20)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,35),(10,34),(11,33),(12,40),(13,39),(14,38),(15,37),(16,36),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)], [(1,46,40),(2,47,33),(3,48,34),(4,41,35),(5,42,36),(6,43,37),(7,44,38),(8,45,39),(9,24,26,13,20,30),(10,17,27,14,21,31),(11,18,28,15,22,32),(12,19,29,16,23,25)], [(2,6),(4,8),(9,32,13,28),(10,29,14,25),(11,26,15,30),(12,31,16,27),(17,19,21,23),(18,24,22,20),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G6A6B6C6D8A8B8C8D8E8F8G8H8I8J12A12B12C12D12E24A24B24C24D
order122223444444466668888888888121212121224242424
size112442112441212248844666612121212224884444

36 irreducible representations

dim111111111222222224444
type+++++++++---++-
imageC1C2C2C2C2C2C4C4C4S3D4D6Dic3Dic3Dic3D6C4oD4S3xD4D4:2S3C8.26D4D8:4Dic3
kernelD8:4Dic3C24:C4C24.C4Q8:3Dic3D4.Dic3C3xC4oD8C3xD8C3xSD16C3xQ16C4oD8C3:C8C2xC8D8SD16Q16C4oD4C2xC6C4C22C3C1
# reps111221242121121221124

Matrix representation of D8:4Dic3 in GL4(F5) generated by

0400
3000
0022
0023
,
0040
0044
4000
1400
,
3300
1300
0042
0020
,
3000
0200
0040
0021
G:=sub<GL(4,GF(5))| [0,3,0,0,4,0,0,0,0,0,2,2,0,0,2,3],[0,0,4,1,0,0,0,4,4,4,0,0,0,4,0,0],[3,1,0,0,3,3,0,0,0,0,4,2,0,0,2,0],[3,0,0,0,0,2,0,0,0,0,4,2,0,0,0,1] >;

D8:4Dic3 in GAP, Magma, Sage, TeX

D_8\rtimes_4{\rm Dic}_3
% in TeX

G:=Group("D8:4Dic3");
// GroupNames label

G:=SmallGroup(192,756);
// by ID

G=gap.SmallGroup(192,756);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,758,219,136,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^5,c*b*c^-1=a^4*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<