# Extensions 1→N→G→Q→1 with N=C4 and Q=C4×Dic3

Direct product G=N×Q with N=C4 and Q=C4×Dic3
dρLabelID
Dic3×C42192Dic3xC4^2192,489

Semidirect products G=N:Q with N=C4 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C41(C4×Dic3) = Dic3×C4⋊C4φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C4192C4:1(C4xDic3)192,533
C42(C4×Dic3) = C4×C4⋊Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C4192C4:2(C4xDic3)192,493

Non-split extensions G=N.Q with N=C4 and Q=C4×Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C4×Dic3) = C12.C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C4192C4.1(C4xDic3)192,88
C4.2(C4×Dic3) = C12.2C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C448C4.2(C4xDic3)192,91
C4.3(C4×Dic3) = C12.3C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C448C4.3(C4xDic3)192,114
C4.4(C4×Dic3) = C12.4C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C496C4.4(C4xDic3)192,117
C4.5(C4×Dic3) = C12.5C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C496C4.5(C4xDic3)192,556
C4.6(C4×Dic3) = Dic3×M4(2)φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C496C4.6(C4xDic3)192,676
C4.7(C4×Dic3) = C12.7C42φ: C4×Dic3/C2×Dic3C2 ⊆ Aut C496C4.7(C4xDic3)192,681
C4.8(C4×Dic3) = C12.8C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C448C4.8(C4xDic3)192,82
C4.9(C4×Dic3) = C12.9C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C4192C4.9(C4xDic3)192,110
C4.10(C4×Dic3) = C12.10C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C496C4.10(C4xDic3)192,111
C4.11(C4×Dic3) = C4×C4.Dic3φ: C4×Dic3/C2×C12C2 ⊆ Aut C496C4.11(C4xDic3)192,481
C4.12(C4×Dic3) = C12.12C42φ: C4×Dic3/C2×C12C2 ⊆ Aut C496C4.12(C4xDic3)192,660
C4.13(C4×Dic3) = C4×C3⋊C16central extension (φ=1)192C4.13(C4xDic3)192,19
C4.14(C4×Dic3) = C24.C8central extension (φ=1)192C4.14(C4xDic3)192,20
C4.15(C4×Dic3) = Dic3×C16central extension (φ=1)192C4.15(C4xDic3)192,59
C4.16(C4×Dic3) = C4810C4central extension (φ=1)192C4.16(C4xDic3)192,61
C4.17(C4×Dic3) = C2×C4×C3⋊C8central extension (φ=1)192C4.17(C4xDic3)192,479
C4.18(C4×Dic3) = C2×C42.S3central extension (φ=1)192C4.18(C4xDic3)192,480
C4.19(C4×Dic3) = C426Dic3central extension (φ=1)192C4.19(C4xDic3)192,491
C4.20(C4×Dic3) = Dic3×C2×C8central extension (φ=1)192C4.20(C4xDic3)192,657
C4.21(C4×Dic3) = C2×C24⋊C4central extension (φ=1)192C4.21(C4xDic3)192,659
C4.22(C4×Dic3) = C12.15C42central stem extension (φ=1)484C4.22(C4xDic3)192,25
C4.23(C4×Dic3) = C48⋊C4central stem extension (φ=1)484C4.23(C4xDic3)192,71
C4.24(C4×Dic3) = C423Dic3central stem extension (φ=1)484C4.24(C4xDic3)192,90
C4.25(C4×Dic3) = C12.20C42central stem extension (φ=1)484C4.25(C4xDic3)192,116
C4.26(C4×Dic3) = C12.21C42central stem extension (φ=1)484C4.26(C4xDic3)192,119

׿
×
𝔽