Copied to
clipboard

G = C4810C4order 192 = 26·3

6th semidirect product of C48 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C4810C4, C165Dic3, C6.2M5(2), C12.17C42, C3⋊C168C4, C3⋊C8.3C8, C6.8(C4×C8), C8.41(C4×S3), C4.21(S3×C8), (C2×C16).8S3, C32(C165C4), (C2×C48).16C2, C24.62(C2×C4), C12.26(C2×C8), (C2×C8).334D6, C2.4(C8×Dic3), C22.10(S3×C8), C2.2(D6.C8), (C8×Dic3).9C2, (C2×Dic3).3C8, C8.24(C2×Dic3), C4.16(C4×Dic3), (C4×Dic3).11C4, (C2×C24).419C22, (C2×C3⋊C8).13C4, (C2×C3⋊C16).10C2, (C2×C6).11(C2×C8), (C2×C4).168(C4×S3), (C2×C12).242(C2×C4), SmallGroup(192,61)

Series: Derived Chief Lower central Upper central

C1C6 — C4810C4
C1C3C6C12C2×C12C2×C24C8×Dic3 — C4810C4
C3C6 — C4810C4
C1C2×C8C2×C16

Generators and relations for C4810C4
 G = < a,b | a48=b4=1, bab-1=a41 >

6C4
6C4
3C2×C4
3C8
3C2×C4
3C8
2Dic3
2Dic3
3C16
3C2×C8
3C42
3C16
3C4×C8
3C2×C16
3C165C4

Smallest permutation representation of C4810C4
Regular action on 192 points
Generators in S192
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 106 83 151)(2 99 84 192)(3 140 85 185)(4 133 86 178)(5 126 87 171)(6 119 88 164)(7 112 89 157)(8 105 90 150)(9 98 91 191)(10 139 92 184)(11 132 93 177)(12 125 94 170)(13 118 95 163)(14 111 96 156)(15 104 49 149)(16 97 50 190)(17 138 51 183)(18 131 52 176)(19 124 53 169)(20 117 54 162)(21 110 55 155)(22 103 56 148)(23 144 57 189)(24 137 58 182)(25 130 59 175)(26 123 60 168)(27 116 61 161)(28 109 62 154)(29 102 63 147)(30 143 64 188)(31 136 65 181)(32 129 66 174)(33 122 67 167)(34 115 68 160)(35 108 69 153)(36 101 70 146)(37 142 71 187)(38 135 72 180)(39 128 73 173)(40 121 74 166)(41 114 75 159)(42 107 76 152)(43 100 77 145)(44 141 78 186)(45 134 79 179)(46 127 80 172)(47 120 81 165)(48 113 82 158)

G:=sub<Sym(192)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,106,83,151)(2,99,84,192)(3,140,85,185)(4,133,86,178)(5,126,87,171)(6,119,88,164)(7,112,89,157)(8,105,90,150)(9,98,91,191)(10,139,92,184)(11,132,93,177)(12,125,94,170)(13,118,95,163)(14,111,96,156)(15,104,49,149)(16,97,50,190)(17,138,51,183)(18,131,52,176)(19,124,53,169)(20,117,54,162)(21,110,55,155)(22,103,56,148)(23,144,57,189)(24,137,58,182)(25,130,59,175)(26,123,60,168)(27,116,61,161)(28,109,62,154)(29,102,63,147)(30,143,64,188)(31,136,65,181)(32,129,66,174)(33,122,67,167)(34,115,68,160)(35,108,69,153)(36,101,70,146)(37,142,71,187)(38,135,72,180)(39,128,73,173)(40,121,74,166)(41,114,75,159)(42,107,76,152)(43,100,77,145)(44,141,78,186)(45,134,79,179)(46,127,80,172)(47,120,81,165)(48,113,82,158)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,106,83,151)(2,99,84,192)(3,140,85,185)(4,133,86,178)(5,126,87,171)(6,119,88,164)(7,112,89,157)(8,105,90,150)(9,98,91,191)(10,139,92,184)(11,132,93,177)(12,125,94,170)(13,118,95,163)(14,111,96,156)(15,104,49,149)(16,97,50,190)(17,138,51,183)(18,131,52,176)(19,124,53,169)(20,117,54,162)(21,110,55,155)(22,103,56,148)(23,144,57,189)(24,137,58,182)(25,130,59,175)(26,123,60,168)(27,116,61,161)(28,109,62,154)(29,102,63,147)(30,143,64,188)(31,136,65,181)(32,129,66,174)(33,122,67,167)(34,115,68,160)(35,108,69,153)(36,101,70,146)(37,142,71,187)(38,135,72,180)(39,128,73,173)(40,121,74,166)(41,114,75,159)(42,107,76,152)(43,100,77,145)(44,141,78,186)(45,134,79,179)(46,127,80,172)(47,120,81,165)(48,113,82,158) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,106,83,151),(2,99,84,192),(3,140,85,185),(4,133,86,178),(5,126,87,171),(6,119,88,164),(7,112,89,157),(8,105,90,150),(9,98,91,191),(10,139,92,184),(11,132,93,177),(12,125,94,170),(13,118,95,163),(14,111,96,156),(15,104,49,149),(16,97,50,190),(17,138,51,183),(18,131,52,176),(19,124,53,169),(20,117,54,162),(21,110,55,155),(22,103,56,148),(23,144,57,189),(24,137,58,182),(25,130,59,175),(26,123,60,168),(27,116,61,161),(28,109,62,154),(29,102,63,147),(30,143,64,188),(31,136,65,181),(32,129,66,174),(33,122,67,167),(34,115,68,160),(35,108,69,153),(36,101,70,146),(37,142,71,187),(38,135,72,180),(39,128,73,173),(40,121,74,166),(41,114,75,159),(42,107,76,152),(43,100,77,145),(44,141,78,186),(45,134,79,179),(46,127,80,172),(47,120,81,165),(48,113,82,158)]])

72 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H6A6B6C8A···8H8I8J8K8L12A12B12C12D16A···16H16I···16P24A···24H48A···48P
order12223444444446668···888881212121216···1616···1624···2448···48
size11112111166662221···1666622222···26···62···22···2

72 irreducible representations

dim1111111111222222222
type+++++-+
imageC1C2C2C2C4C4C4C4C8C8S3Dic3D6C4×S3C4×S3M5(2)S3×C8S3×C8D6.C8
kernelC4810C4C2×C3⋊C16C8×Dic3C2×C48C3⋊C16C48C2×C3⋊C8C4×Dic3C3⋊C8C2×Dic3C2×C16C16C2×C8C8C2×C4C6C4C22C2
# reps11114422881212284416

Matrix representation of C4810C4 in GL3(𝔽97) generated by

2200
08040
05740
,
7500
0844
03689
G:=sub<GL(3,GF(97))| [22,0,0,0,80,57,0,40,40],[75,0,0,0,8,36,0,44,89] >;

C4810C4 in GAP, Magma, Sage, TeX

C_{48}\rtimes_{10}C_4
% in TeX

G:=Group("C48:10C4");
// GroupNames label

G:=SmallGroup(192,61);
// by ID

G=gap.SmallGroup(192,61);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,477,64,80,102,6278]);
// Polycyclic

G:=Group<a,b|a^48=b^4=1,b*a*b^-1=a^41>;
// generators/relations

Export

Subgroup lattice of C4810C4 in TeX

׿
×
𝔽