Extensions 1→N→G→Q→1 with N=SD16 and Q=D6

Direct product G=N×Q with N=SD16 and Q=D6
dρLabelID
C2×S3×SD1648C2xS3xSD16192,1317

Semidirect products G=N:Q with N=SD16 and Q=D6
extensionφ:Q→Out NdρLabelID
SD161D6 = S3×C8⋊C22φ: D6/S3C2 ⊆ Out SD16248+SD16:1D6192,1331
SD162D6 = D84D6φ: D6/S3C2 ⊆ Out SD16488-SD16:2D6192,1332
SD163D6 = D85D6φ: D6/S3C2 ⊆ Out SD16488+SD16:3D6192,1333
SD164D6 = D86D6φ: D6/S3C2 ⊆ Out SD16488-SD16:4D6192,1334
SD165D6 = S3×C8.C22φ: D6/S3C2 ⊆ Out SD16488-SD16:5D6192,1335
SD166D6 = D24⋊C22φ: D6/S3C2 ⊆ Out SD16488+SD16:6D6192,1336
SD167D6 = C24.C23φ: D6/S3C2 ⊆ Out SD16488+SD16:7D6192,1337
SD168D6 = C2×Q83D6φ: D6/C6C2 ⊆ Out SD1648SD16:8D6192,1318
SD169D6 = C2×D4.D6φ: D6/C6C2 ⊆ Out SD1696SD16:9D6192,1319
SD1610D6 = SD16⋊D6φ: D6/C6C2 ⊆ Out SD16484SD16:10D6192,1327
SD1611D6 = D815D6φ: D6/C6C2 ⊆ Out SD16484+SD16:11D6192,1328
SD1612D6 = C2×Q8.7D6φ: trivial image96SD16:12D6192,1320
SD1613D6 = SD1613D6φ: trivial image484SD16:13D6192,1321
SD1614D6 = S3×C4○D8φ: trivial image484SD16:14D6192,1326
SD1615D6 = D811D6φ: trivial image484SD16:15D6192,1329

Non-split extensions G=N.Q with N=SD16 and Q=D6
extensionφ:Q→Out NdρLabelID
SD16.1D6 = SD16.D6φ: D6/S3C2 ⊆ Out SD16968-SD16.1D6192,1338
SD16.2D6 = D8.10D6φ: D6/C6C2 ⊆ Out SD16964-SD16.2D6192,1330

׿
×
𝔽