Extensions 1→N→G→Q→1 with N=S3xD8 and Q=C2

Direct product G=NxQ with N=S3xD8 and Q=C2
dρLabelID
C2xS3xD848C2xS3xD8192,1313

Semidirect products G=N:Q with N=S3xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD8):1C2 = S3xC8:C22φ: C2/C1C2 ⊆ Out S3xD8248+(S3xD8):1C2192,1331
(S3xD8):2C2 = D8:5D6φ: C2/C1C2 ⊆ Out S3xD8488+(S3xD8):2C2192,1333
(S3xD8):3C2 = S3xD16φ: C2/C1C2 ⊆ Out S3xD8484+(S3xD8):3C2192,469
(S3xD8):4C2 = D8:D6φ: C2/C1C2 ⊆ Out S3xD8484(S3xD8):4C2192,470
(S3xD8):5C2 = D48:C2φ: C2/C1C2 ⊆ Out S3xD8484+(S3xD8):5C2192,473
(S3xD8):6C2 = D8:13D6φ: C2/C1C2 ⊆ Out S3xD8484(S3xD8):6C2192,1316
(S3xD8):7C2 = D8:15D6φ: C2/C1C2 ⊆ Out S3xD8484+(S3xD8):7C2192,1328
(S3xD8):8C2 = S3xC4oD8φ: trivial image484(S3xD8):8C2192,1326

Non-split extensions G=N.Q with N=S3xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xD8).C2 = S3xSD32φ: C2/C1C2 ⊆ Out S3xD8484(S3xD8).C2192,472

׿
x
:
Z
F
o
wr
Q
<