direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×D8, C8⋊4D6, D4⋊1D6, D24⋊4C2, C24⋊2C22, D6.12D4, D12⋊1C22, C12.1C23, Dic3.3D4, C3⋊2(C2×D8), (S3×C8)⋊1C2, D4⋊S3⋊1C2, (C3×D8)⋊2C2, (S3×D4)⋊1C2, C3⋊C8⋊5C22, C2.15(S3×D4), C6.27(C2×D4), (C3×D4)⋊1C22, C4.1(C22×S3), (C4×S3).7C22, SmallGroup(96,117)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D8
G = < a,b,c,d | a3=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 242 in 76 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, D4, D4, C23, Dic3, C12, D6, D6, C2×C6, C2×C8, D8, D8, C2×D4, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C2×D8, S3×C8, D24, D4⋊S3, C3×D8, S3×D4, S3×D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, C2×D8, S3×D4, S3×D8
Character table of S3×D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12 | 24A | 24B | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 12 | 12 | 2 | 2 | 6 | 2 | 8 | 8 | 2 | 2 | 6 | 6 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 2 | 0 | -1 | 1 | 1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | 1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | √2 | -√2 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -√2 | √2 | orthogonal faithful |
(1 23 10)(2 24 11)(3 17 12)(4 18 13)(5 19 14)(6 20 15)(7 21 16)(8 22 9)
(1 5)(2 6)(3 7)(4 8)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)
G:=sub<Sym(24)| (1,23,10)(2,24,11)(3,17,12)(4,18,13)(5,19,14)(6,20,15)(7,21,16)(8,22,9), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24)>;
G:=Group( (1,23,10)(2,24,11)(3,17,12)(4,18,13)(5,19,14)(6,20,15)(7,21,16)(8,22,9), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24) );
G=PermutationGroup([[(1,23,10),(2,24,11),(3,17,12),(4,18,13),(5,19,14),(6,20,15),(7,21,16),(8,22,9)], [(1,5),(2,6),(3,7),(4,8),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24)]])
G:=TransitiveGroup(24,139);
S3×D8 is a maximal subgroup of
D8⋊D6 D48⋊C2 D8⋊13D6 D8⋊15D6 D8⋊5D6 C24⋊4D6 D12⋊D6 C40⋊5D6 D15⋊D8
S3×D8 is a maximal quotient of
Dic3⋊4D8 Dic3.D8 Dic3.SD16 D4⋊D12 D6.D8 D6⋊D8 D12⋊3D4 Dic3⋊5D8 C24⋊2Q8 D6.5D8 D6⋊2D8 D12⋊2Q8 D8⋊D6 D16⋊3S3 D48⋊C2 SD32⋊S3 D6.2D8 Q32⋊S3 D48⋊5C2 Dic3⋊D8 C24⋊5D4 D12⋊D4 D6⋊3D8 C24⋊4D6 D12⋊D6 C40⋊5D6 D15⋊D8
Matrix representation of S3×D8 ►in GL4(𝔽7) generated by
3 | 0 | 4 | 6 |
1 | 2 | 6 | 5 |
4 | 0 | 2 | 4 |
1 | 0 | 3 | 5 |
5 | 3 | 4 | 3 |
0 | 6 | 4 | 4 |
4 | 2 | 0 | 5 |
3 | 5 | 1 | 3 |
6 | 3 | 0 | 2 |
1 | 6 | 1 | 1 |
2 | 2 | 2 | 3 |
3 | 4 | 2 | 6 |
2 | 3 | 1 | 4 |
3 | 6 | 0 | 3 |
6 | 2 | 2 | 2 |
6 | 4 | 6 | 4 |
G:=sub<GL(4,GF(7))| [3,1,4,1,0,2,0,0,4,6,2,3,6,5,4,5],[5,0,4,3,3,6,2,5,4,4,0,1,3,4,5,3],[6,1,2,3,3,6,2,4,0,1,2,2,2,1,3,6],[2,3,6,6,3,6,2,4,1,0,2,6,4,3,2,4] >;
S3×D8 in GAP, Magma, Sage, TeX
S_3\times D_8
% in TeX
G:=Group("S3xD8");
// GroupNames label
G:=SmallGroup(96,117);
// by ID
G=gap.SmallGroup(96,117);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,116,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export