Copied to
clipboard

G = S3xD8order 96 = 25·3

Direct product of S3 and D8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xD8, C8:4D6, D4:1D6, D24:4C2, C24:2C22, D6.12D4, D12:1C22, C12.1C23, Dic3.3D4, C3:2(C2xD8), (S3xC8):1C2, D4:S3:1C2, (C3xD8):2C2, (S3xD4):1C2, C3:C8:5C22, C2.15(S3xD4), C6.27(C2xD4), (C3xD4):1C22, C4.1(C22xS3), (C4xS3).7C22, SmallGroup(96,117)

Series: Derived Chief Lower central Upper central

C1C12 — S3xD8
C1C3C6C12C4xS3S3xD4 — S3xD8
C3C6C12 — S3xD8
C1C2C4D8

Generators and relations for S3xD8
 G = < a,b,c,d | a3=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 242 in 76 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2xC4, D4, D4, C23, Dic3, C12, D6, D6, C2xC6, C2xC8, D8, D8, C2xD4, C3:C8, C24, C4xS3, D12, C3:D4, C3xD4, C22xS3, C2xD8, S3xC8, D24, D4:S3, C3xD8, S3xD4, S3xD8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, S3xD8

Character table of S3xD8

 class 12A2B2C2D2E2F2G34A4B6A6B6C8A8B8C8D1224A24B
 size 11334412122262882266444
ρ1111111111111111111111    trivial
ρ21111-111-11111-11-1-1-1-11-1-1    linear of order 2
ρ311-1-1-11-1111-11-11-1-1111-1-1    linear of order 2
ρ411-1-11-11-111-111-1-1-1111-1-1    linear of order 2
ρ511111-1-1111111-1-1-1-1-11-1-1    linear of order 2
ρ611-1-111-1-111-111111-1-1111    linear of order 2
ρ711-1-1-1-11111-11-1-111-1-1111    linear of order 2
ρ81111-1-1-1-11111-1-11111111    linear of order 2
ρ9222200002-2-22000000-200    orthogonal lifted from D4
ρ1022-2-200002-222000000-200    orthogonal lifted from D4
ρ112200-2200-120-11-1-2-200-111    orthogonal lifted from D6
ρ122200-2-200-120-1112200-1-1-1    orthogonal lifted from D6
ρ1322002-200-120-1-11-2-200-111    orthogonal lifted from D6
ρ1422002200-120-1-1-12200-1-1-1    orthogonal lifted from S3
ρ152-2-220000200-2002-22-202-2    orthogonal lifted from D8
ρ162-22-20000200-200-222-20-22    orthogonal lifted from D8
ρ172-22-20000200-2002-2-2202-2    orthogonal lifted from D8
ρ182-2-220000200-200-22-220-22    orthogonal lifted from D8
ρ1944000000-2-40-2000000200    orthogonal lifted from S3xD4
ρ204-4000000-200200-22220002-2    orthogonal faithful
ρ214-4000000-20020022-22000-22    orthogonal faithful

Permutation representations of S3xD8
On 24 points - transitive group 24T139
Generators in S24
(1 23 10)(2 24 11)(3 17 12)(4 18 13)(5 19 14)(6 20 15)(7 21 16)(8 22 9)
(1 5)(2 6)(3 7)(4 8)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 21)(18 20)(22 24)

G:=sub<Sym(24)| (1,23,10)(2,24,11)(3,17,12)(4,18,13)(5,19,14)(6,20,15)(7,21,16)(8,22,9), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24)>;

G:=Group( (1,23,10)(2,24,11)(3,17,12)(4,18,13)(5,19,14)(6,20,15)(7,21,16)(8,22,9), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,21)(18,20)(22,24) );

G=PermutationGroup([[(1,23,10),(2,24,11),(3,17,12),(4,18,13),(5,19,14),(6,20,15),(7,21,16),(8,22,9)], [(1,5),(2,6),(3,7),(4,8),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,21),(18,20),(22,24)]])

G:=TransitiveGroup(24,139);

S3xD8 is a maximal subgroup of
D8:D6  D48:C2  D8:13D6  D8:15D6  D8:5D6  C24:4D6  D12:D6  C40:5D6  D15:D8
S3xD8 is a maximal quotient of
Dic3:4D8  Dic3.D8  Dic3.SD16  D4:D12  D6.D8  D6:D8  D12:3D4  Dic3:5D8  C24:2Q8  D6.5D8  D6:2D8  D12:2Q8  D8:D6  D16:3S3  D48:C2  SD32:S3  D6.2D8  Q32:S3  D48:5C2  Dic3:D8  C24:5D4  D12:D4  D6:3D8  C24:4D6  D12:D6  C40:5D6  D15:D8

Matrix representation of S3xD8 in GL4(F7) generated by

3046
1265
4024
1035
,
5343
0644
4205
3513
,
6302
1611
2223
3426
,
2314
3603
6222
6464
G:=sub<GL(4,GF(7))| [3,1,4,1,0,2,0,0,4,6,2,3,6,5,4,5],[5,0,4,3,3,6,2,5,4,4,0,1,3,4,5,3],[6,1,2,3,3,6,2,4,0,1,2,2,2,1,3,6],[2,3,6,6,3,6,2,4,1,0,2,6,4,3,2,4] >;

S3xD8 in GAP, Magma, Sage, TeX

S_3\times D_8
% in TeX

G:=Group("S3xD8");
// GroupNames label

G:=SmallGroup(96,117);
// by ID

G=gap.SmallGroup(96,117);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,116,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of S3xD8 in TeX

׿
x
:
Z
F
o
wr
Q
<