metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C16⋊3D6, D48⋊6C2, Q16⋊2D6, D8.3D6, D6.7D8, C48⋊3C22, SD32⋊1S3, D24⋊6C22, Dic3.9D8, C24.17C23, C3⋊C8.3D4, (S3×D8)⋊5C2, C4.5(S3×D4), C3⋊D16⋊3C2, C3⋊C16⋊2C22, D6.C8⋊1C2, (C4×S3).8D4, C2.20(S3×D8), C6.36(C2×D8), C3⋊3(C16⋊C22), (C3×SD32)⋊1C2, C12.11(C2×D4), C8.6D6⋊2C2, D24⋊C2⋊3C2, (S3×C8).4C22, C8.23(C22×S3), (C3×Q16)⋊5C22, (C3×D8).3C22, SmallGroup(192,473)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D48⋊C2
G = < a,b,c | a48=b2=c2=1, bab=a-1, cac=a7, bc=cb >
Subgroups: 396 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, C3⋊C8, C24, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, M5(2), D16, SD32, SD32, C2×D8, C4○D8, C3⋊C16, C48, S3×C8, D24, D4⋊S3, Q8⋊2S3, C3×D8, C3×Q16, S3×D4, Q8⋊3S3, C16⋊C22, D6.C8, D48, C3⋊D16, C8.6D6, C3×SD32, S3×D8, D24⋊C2, D48⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, C2×D8, S3×D4, C16⋊C22, S3×D8, D48⋊C2
Character table of D48⋊C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 12A | 12B | 16A | 16B | 16C | 16D | 24A | 24B | 48A | 48B | 48C | 48D | |
size | 1 | 1 | 6 | 8 | 24 | 24 | 2 | 2 | 6 | 8 | 2 | 16 | 2 | 2 | 12 | 4 | 16 | 4 | 4 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 2 | 0 | 0 | -1 | 2 | 0 | -2 | -1 | -1 | 2 | 2 | 0 | -1 | 1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 2 | 0 | 0 | -1 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 2 | -1 | 1 | 2 | 2 | 0 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | -2 | -1 | 1 | 2 | 2 | 0 | -1 | 1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √2 | -√2 | -√2 | √2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√2 | √2 | √2 | -√2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | -2 | 0 | -4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from S3×D8 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from S3×D8 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | 2ζ1613ζ32+ζ1613+2ζ1611ζ32+ζ1611 | 2ζ167ζ3+ζ167+2ζ16ζ3+ζ16 | 2ζ167ζ32+ζ167+2ζ16ζ32+ζ16 | 2ζ165ζ32+ζ165+2ζ163ζ32+ζ163 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(2 8)(3 15)(4 22)(5 29)(6 36)(7 43)(10 16)(11 23)(12 30)(13 37)(14 44)(18 24)(19 31)(20 38)(21 45)(26 32)(27 39)(28 46)(34 40)(35 47)(42 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(2,8),(3,15),(4,22),(5,29),(6,36),(7,43),(10,16),(11,23),(12,30),(13,37),(14,44),(18,24),(19,31),(20,38),(21,45),(26,32),(27,39),(28,46),(34,40),(35,47),(42,48)]])
Matrix representation of D48⋊C2 ►in GL4(𝔽7) generated by
6 | 4 | 1 | 5 |
6 | 2 | 6 | 4 |
5 | 6 | 5 | 6 |
1 | 6 | 3 | 3 |
5 | 2 | 4 | 5 |
1 | 5 | 1 | 3 |
4 | 4 | 1 | 6 |
0 | 4 | 6 | 3 |
2 | 4 | 4 | 0 |
4 | 2 | 6 | 1 |
4 | 3 | 6 | 6 |
2 | 5 | 6 | 4 |
G:=sub<GL(4,GF(7))| [6,6,5,1,4,2,6,6,1,6,5,3,5,4,6,3],[5,1,4,0,2,5,4,4,4,1,1,6,5,3,6,3],[2,4,4,2,4,2,3,5,4,6,6,6,0,1,6,4] >;
D48⋊C2 in GAP, Magma, Sage, TeX
D_{48}\rtimes C_2
% in TeX
G:=Group("D48:C2");
// GroupNames label
G:=SmallGroup(192,473);
// by ID
G=gap.SmallGroup(192,473);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,135,184,346,185,192,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^48=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^7,b*c=c*b>;
// generators/relations
Export