Copied to
clipboard

G = D48⋊C2order 192 = 26·3

6th semidirect product of D48 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C163D6, D486C2, Q162D6, D8.3D6, D6.7D8, C483C22, SD321S3, D246C22, Dic3.9D8, C24.17C23, C3⋊C8.3D4, (S3×D8)⋊5C2, C4.5(S3×D4), C3⋊D163C2, C3⋊C162C22, D6.C81C2, (C4×S3).8D4, C2.20(S3×D8), C6.36(C2×D8), C33(C16⋊C22), (C3×SD32)⋊1C2, C12.11(C2×D4), C8.6D62C2, D24⋊C23C2, (S3×C8).4C22, C8.23(C22×S3), (C3×Q16)⋊5C22, (C3×D8).3C22, SmallGroup(192,473)

Series: Derived Chief Lower central Upper central

C1C24 — D48⋊C2
C1C3C6C12C24S3×C8S3×D8 — D48⋊C2
C3C6C12C24 — D48⋊C2
C1C2C4C8SD32

Generators and relations for D48⋊C2
 G = < a,b,c | a48=b2=c2=1, bab=a-1, cac=a7, bc=cb >

Subgroups: 396 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, C3⋊C8, C24, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, M5(2), D16, SD32, SD32, C2×D8, C4○D8, C3⋊C16, C48, S3×C8, D24, D4⋊S3, Q82S3, C3×D8, C3×Q16, S3×D4, Q83S3, C16⋊C22, D6.C8, D48, C3⋊D16, C8.6D6, C3×SD32, S3×D8, D24⋊C2, D48⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, C2×D8, S3×D4, C16⋊C22, S3×D8, D48⋊C2

Character table of D48⋊C2

 class 12A2B2C2D2E34A4B4C6A6B8A8B8C12A12B16A16B16C16D24A24B48A48B48C48D
 size 1168242422682162212416441212444444
ρ1111111111111111111111111111    trivial
ρ2111-1-1-1111-11-11111-11111111111    linear of order 2
ρ311-1-11-111-111-111-111-1-11111-1-1-1-1    linear of order 2
ρ411-11-1111-1-11111-11-1-1-11111-1-1-1-1    linear of order 2
ρ511111-1111-1111111-1-1-1-1-111-1-1-1-1    linear of order 2
ρ6111-1-1111111-111111-1-1-1-111-1-1-1-1    linear of order 2
ρ711-1-11111-1-11-111-11-111-1-1111111    linear of order 2
ρ811-11-1-111-111111-11111-1-1111111    linear of order 2
ρ9220200-120-2-1-1220-11-2-200-1-11111    orthogonal lifted from D6
ρ10220200-1202-1-1220-1-12200-1-1-1-1-1-1    orthogonal lifted from S3
ρ11222000222020-2-2-2200000-2-20000    orthogonal lifted from D4
ρ12220-200-1202-11220-1-1-2-200-1-11111    orthogonal lifted from D6
ρ13220-200-120-2-11220-112200-1-1-1-1-1-1    orthogonal lifted from D6
ρ1422-200022-2020-2-22200000-2-20000    orthogonal lifted from D4
ρ152220002-2-2020000-202-2-22002-2-22    orthogonal lifted from D8
ρ1622-20002-22020000-202-22-2002-2-22    orthogonal lifted from D8
ρ1722-20002-22020000-20-22-2200-222-2    orthogonal lifted from D8
ρ182220002-2-2020000-20-222-200-222-2    orthogonal lifted from D8
ρ19440000-2400-20-4-40-200000220000    orthogonal lifted from S3×D4
ρ204-400004000-4022-220000000-22220000    orthogonal lifted from C16⋊C22
ρ21440000-2-400-200002022-220000-222-2    orthogonal lifted from S3×D8
ρ224-400004000-40-2222000000022-220000    orthogonal lifted from C16⋊C22
ρ23440000-2-400-2000020-222200002-2-22    orthogonal lifted from S3×D8
ρ244-40000-200020-22220000000-22167ζ3167+2ζ16ζ316165ζ32165+2ζ163ζ321631613ζ321613+2ζ1611ζ321611167ζ32167+2ζ16ζ3216    orthogonal faithful
ρ254-40000-20002022-2200000002-2165ζ32165+2ζ163ζ32163167ζ32167+2ζ16ζ3216167ζ3167+2ζ16ζ3161613ζ321613+2ζ1611ζ321611    orthogonal faithful
ρ264-40000-200020-22220000000-22167ζ32167+2ζ16ζ32161613ζ321613+2ζ1611ζ321611165ζ32165+2ζ163ζ32163167ζ3167+2ζ16ζ316    orthogonal faithful
ρ274-40000-20002022-2200000002-21613ζ321613+2ζ1611ζ321611167ζ3167+2ζ16ζ316167ζ32167+2ζ16ζ3216165ζ32165+2ζ163ζ32163    orthogonal faithful

Smallest permutation representation of D48⋊C2
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)
(2 8)(3 15)(4 22)(5 29)(6 36)(7 43)(10 16)(11 23)(12 30)(13 37)(14 44)(18 24)(19 31)(20 38)(21 45)(26 32)(27 39)(28 46)(34 40)(35 47)(42 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42), (2,8)(3,15)(4,22)(5,29)(6,36)(7,43)(10,16)(11,23)(12,30)(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)(42,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42)], [(2,8),(3,15),(4,22),(5,29),(6,36),(7,43),(10,16),(11,23),(12,30),(13,37),(14,44),(18,24),(19,31),(20,38),(21,45),(26,32),(27,39),(28,46),(34,40),(35,47),(42,48)]])

Matrix representation of D48⋊C2 in GL4(𝔽7) generated by

6415
6264
5656
1633
,
5245
1513
4416
0463
,
2440
4261
4366
2564
G:=sub<GL(4,GF(7))| [6,6,5,1,4,2,6,6,1,6,5,3,5,4,6,3],[5,1,4,0,2,5,4,4,4,1,1,6,5,3,6,3],[2,4,4,2,4,2,3,5,4,6,6,6,0,1,6,4] >;

D48⋊C2 in GAP, Magma, Sage, TeX

D_{48}\rtimes C_2
% in TeX

G:=Group("D48:C2");
// GroupNames label

G:=SmallGroup(192,473);
// by ID

G=gap.SmallGroup(192,473);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,135,184,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^48=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^7,b*c=c*b>;
// generators/relations

Export

Character table of D48⋊C2 in TeX

׿
×
𝔽