Copied to
clipboard

G = S3×SD32order 192 = 26·3

Direct product of S3 and SD32

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×SD32, C165D6, Q161D6, D8.2D6, C485C22, D6.13D8, Dic3.4D8, C24.16C23, D24.2C22, Dic125C22, (S3×D8).C2, C3⋊C8.13D4, C4.4(S3×D4), C32(C2×SD32), (S3×C16)⋊4C2, C3⋊C166C22, D8.S33C2, (S3×Q16)⋊3C2, C48⋊C25C2, C6.35(C2×D8), C2.19(S3×D8), (C3×SD32)⋊3C2, (C4×S3).20D4, C8.6D61C2, C12.10(C2×D4), C8.22(C22×S3), (C3×Q16)⋊4C22, (C3×D8).2C22, (S3×C8).11C22, SmallGroup(192,472)

Series: Derived Chief Lower central Upper central

C1C24 — S3×SD32
C1C3C6C12C24S3×C8S3×D8 — S3×SD32
C3C6C12C24 — S3×SD32
C1C2C4C8SD32

Generators and relations for S3×SD32
 G = < a,b,c,d | a3=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c7 >

Subgroups: 364 in 90 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C16, C16, C2×C8, D8, D8, Q16, Q16, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C2×C16, SD32, SD32, C2×D8, C2×Q16, C3⋊C16, C48, S3×C8, D24, Dic12, D4⋊S3, C3⋊Q16, C3×D8, C3×Q16, S3×D4, S3×Q8, C2×SD32, S3×C16, C48⋊C2, D8.S3, C8.6D6, C3×SD32, S3×D8, S3×Q16, S3×SD32
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, SD32, C2×D8, S3×D4, C2×SD32, S3×D8, S3×SD32

Smallest permutation representation of S3×SD32
On 48 points
Generators in S48
(1 44 25)(2 45 26)(3 46 27)(4 47 28)(5 48 29)(6 33 30)(7 34 31)(8 35 32)(9 36 17)(10 37 18)(11 38 19)(12 39 20)(13 40 21)(14 41 22)(15 42 23)(16 43 24)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 44)(18 45)(19 46)(20 47)(21 48)(22 33)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(18 24)(19 31)(20 22)(21 29)(23 27)(26 32)(28 30)(33 47)(34 38)(35 45)(37 43)(39 41)(40 48)(42 46)

G:=sub<Sym(48)| (1,44,25)(2,45,26)(3,46,27)(4,47,28)(5,48,29)(6,33,30)(7,34,31)(8,35,32)(9,36,17)(10,37,18)(11,38,19)(12,39,20)(13,40,21)(14,41,22)(15,42,23)(16,43,24), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,44)(18,45)(19,46)(20,47)(21,48)(22,33)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,47)(34,38)(35,45)(37,43)(39,41)(40,48)(42,46)>;

G:=Group( (1,44,25)(2,45,26)(3,46,27)(4,47,28)(5,48,29)(6,33,30)(7,34,31)(8,35,32)(9,36,17)(10,37,18)(11,38,19)(12,39,20)(13,40,21)(14,41,22)(15,42,23)(16,43,24), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,44)(18,45)(19,46)(20,47)(21,48)(22,33)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,47)(34,38)(35,45)(37,43)(39,41)(40,48)(42,46) );

G=PermutationGroup([[(1,44,25),(2,45,26),(3,46,27),(4,47,28),(5,48,29),(6,33,30),(7,34,31),(8,35,32),(9,36,17),(10,37,18),(11,38,19),(12,39,20),(13,40,21),(14,41,22),(15,42,23),(16,43,24)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,44),(18,45),(19,46),(20,47),(21,48),(22,33),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(18,24),(19,31),(20,22),(21,29),(23,27),(26,32),(28,30),(33,47),(34,38),(35,45),(37,43),(39,41),(40,48),(42,46)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A6B8A8B8C8D12A12B16A16B16C16D16E16F16G16H24A24B48A48B48C48D
order1222223444466888812121616161616161616242448484848
size1133824226824216226641622226666444444

33 irreducible representations

dim11111111222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6D8D8SD32S3×D4S3×D8S3×SD32
kernelS3×SD32S3×C16C48⋊C2D8.S3C8.6D6C3×SD32S3×D8S3×Q16SD32C3⋊C8C4×S3C16D8Q16Dic3D6S3C4C2C1
# reps11111111111111228124

Matrix representation of S3×SD32 in GL4(𝔽7) generated by

3046
1265
4024
1035
,
0232
5440
2611
3152
,
3405
6366
5504
4353
,
6011
2625
1043
6045
G:=sub<GL(4,GF(7))| [3,1,4,1,0,2,0,0,4,6,2,3,6,5,4,5],[0,5,2,3,2,4,6,1,3,4,1,5,2,0,1,2],[3,6,5,4,4,3,5,3,0,6,0,5,5,6,4,3],[6,2,1,6,0,6,0,0,1,2,4,4,1,5,3,5] >;

S3×SD32 in GAP, Magma, Sage, TeX

S_3\times {\rm SD}_{32}
% in TeX

G:=Group("S3xSD32");
// GroupNames label

G:=SmallGroup(192,472);
// by ID

G=gap.SmallGroup(192,472);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,135,184,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^7>;
// generators/relations

׿
×
𝔽