Extensions 1→N→G→Q→1 with N=C4 and Q=C3⋊Q16

Direct product G=N×Q with N=C4 and Q=C3⋊Q16
dρLabelID
C4×C3⋊Q16192C4xC3:Q16192,588

Semidirect products G=N:Q with N=C4 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C41(C3⋊Q16) = C123Q16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4:1(C3:Q16)192,651
C42(C3⋊Q16) = C12⋊Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C4192C4:2(C3:Q16)192,649
C43(C3⋊Q16) = C127Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C4192C4:3(C3:Q16)192,590

Non-split extensions G=N.Q with N=C4 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C4.1(C3⋊Q16) = C6.6D16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4.1(C3:Q16)192,48
C4.2(C3⋊Q16) = C6.SD32φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4.2(C3:Q16)192,49
C4.3(C3⋊Q16) = C12.17D8φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4.3(C3:Q16)192,637
C4.4(C3⋊Q16) = C12.9Q16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4.4(C3:Q16)192,638
C4.5(C3⋊Q16) = C12.Q16φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C4192C4.5(C3:Q16)192,652
C4.6(C3⋊Q16) = C12.5Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C4192C4.6(C3:Q16)192,105
C4.7(C3⋊Q16) = C12.10D8φ: C3⋊Q16/Dic6C2 ⊆ Aut C4192C4.7(C3:Q16)192,106
C4.8(C3⋊Q16) = Dic65Q8φ: C3⋊Q16/Dic6C2 ⊆ Aut C4192C4.8(C3:Q16)192,650
C4.9(C3⋊Q16) = C4.Dic12φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C4192C4.9(C3:Q16)192,40
C4.10(C3⋊Q16) = C12.2D8φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C4192C4.10(C3:Q16)192,45
C4.11(C3⋊Q16) = Q85Dic6φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C4192C4.11(C3:Q16)192,580
C4.12(C3⋊Q16) = C12.53D8central extension (φ=1)192C4.12(C3:Q16)192,38
C4.13(C3⋊Q16) = Dic62C8central extension (φ=1)192C4.13(C3:Q16)192,43
C4.14(C3⋊Q16) = C12.26Q16central extension (φ=1)192C4.14(C3:Q16)192,94

׿
×
𝔽