Extensions 1→N→G→Q→1 with N=C16 and Q=Dic3

Direct product G=N×Q with N=C16 and Q=Dic3

Semidirect products G=N:Q with N=C16 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C161Dic3 = C24.Q8φ: Dic3/C3C4 ⊆ Aut C16484C16:1Dic3192,72
C162Dic3 = C48⋊C4φ: Dic3/C3C4 ⊆ Aut C16484C16:2Dic3192,71
C163Dic3 = C485C4φ: Dic3/C6C2 ⊆ Aut C16192C16:3Dic3192,63
C164Dic3 = C486C4φ: Dic3/C6C2 ⊆ Aut C16192C16:4Dic3192,64
C165Dic3 = C4810C4φ: Dic3/C6C2 ⊆ Aut C16192C16:5Dic3192,61

Non-split extensions G=N.Q with N=C16 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C16.1Dic3 = C48.C4φ: Dic3/C6C2 ⊆ Aut C16962C16.1Dic3192,65
C16.2Dic3 = C3⋊M6(2)φ: Dic3/C6C2 ⊆ Aut C16962C16.2Dic3192,58
C16.3Dic3 = C3⋊C64central extension (φ=1)1922C16.3Dic3192,1
C16.4Dic3 = C2×C3⋊C32central extension (φ=1)192C16.4Dic3192,57