# Extensions 1→N→G→Q→1 with N=C4 and Q=C6.D4

Direct product G=N×Q with N=C4 and Q=C6.D4
dρLabelID
C4×C6.D496C4xC6.D4192,768

Semidirect products G=N:Q with N=C4 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C41(C6.D4) = C24.30D6φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4:1(C6.D4)192,780
C42(C6.D4) = C24.75D6φ: C6.D4/C22×C6C2 ⊆ Aut C496C4:2(C6.D4)192,771

Non-split extensions G=N.Q with N=C4 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C4.1(C6.D4) = D81Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4.1(C6.D4)192,121
C4.2(C6.D4) = D8.Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C4484C4.2(C6.D4)192,122
C4.3(C6.D4) = C6.5Q32φ: C6.D4/C2×Dic3C2 ⊆ Aut C4192C4.3(C6.D4)192,123
C4.4(C6.D4) = Q16.Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C4964C4.4(C6.D4)192,124
C4.5(C6.D4) = D82Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C4484C4.5(C6.D4)192,125
C4.6(C6.D4) = C24.41D4φ: C6.D4/C2×Dic3C2 ⊆ Aut C4964C4.6(C6.D4)192,126
C4.7(C6.D4) = C2×D4⋊Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4.7(C6.D4)192,773
C4.8(C6.D4) = (C6×D4)⋊6C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C448C4.8(C6.D4)192,774
C4.9(C6.D4) = C2×C12.D4φ: C6.D4/C2×Dic3C2 ⊆ Aut C448C4.9(C6.D4)192,775
C4.10(C6.D4) = C2×Q82Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C4192C4.10(C6.D4)192,783
C4.11(C6.D4) = (C6×Q8)⋊6C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4.11(C6.D4)192,784
C4.12(C6.D4) = C2×C12.10D4φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4.12(C6.D4)192,785
C4.13(C6.D4) = (C6×Q8)⋊7C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C4192C4.13(C6.D4)192,788
C4.14(C6.D4) = (C6×D4).11C4φ: C6.D4/C2×Dic3C2 ⊆ Aut C496C4.14(C6.D4)192,793
C4.15(C6.D4) = C12.9C42φ: C6.D4/C22×C6C2 ⊆ Aut C4192C4.15(C6.D4)192,110
C4.16(C6.D4) = C12.10C42φ: C6.D4/C22×C6C2 ⊆ Aut C496C4.16(C6.D4)192,111
C4.17(C6.D4) = M4(2)⋊Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C496C4.17(C6.D4)192,113
C4.18(C6.D4) = C12.20C42φ: C6.D4/C22×C6C2 ⊆ Aut C4484C4.18(C6.D4)192,116
C4.19(C6.D4) = M4(2)⋊4Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C4484C4.19(C6.D4)192,118
C4.20(C6.D4) = C12.21C42φ: C6.D4/C22×C6C2 ⊆ Aut C4484C4.20(C6.D4)192,119
C4.21(C6.D4) = C24.6Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C448C4.21(C6.D4)192,766
C4.22(C6.D4) = C4○D43Dic3φ: C6.D4/C22×C6C2 ⊆ Aut C496C4.22(C6.D4)192,791
C4.23(C6.D4) = (C6×D4)⋊9C4φ: C6.D4/C22×C6C2 ⊆ Aut C4484C4.23(C6.D4)192,795
C4.24(C6.D4) = C24.98D4central extension (φ=1)96C4.24(C6.D4)192,108
C4.25(C6.D4) = (C2×C24)⋊5C4central extension (φ=1)192C4.25(C6.D4)192,109
C4.26(C6.D4) = C24.D4central extension (φ=1)484C4.26(C6.D4)192,112
C4.27(C6.D4) = C12.3C42central extension (φ=1)48C4.27(C6.D4)192,114
C4.28(C6.D4) = (C2×C24)⋊C4central extension (φ=1)484C4.28(C6.D4)192,115
C4.29(C6.D4) = C12.4C42central extension (φ=1)96C4.29(C6.D4)192,117
C4.30(C6.D4) = C24.99D4central extension (φ=1)964C4.30(C6.D4)192,120
C4.31(C6.D4) = C2×C12.55D4central extension (φ=1)96C4.31(C6.D4)192,765
C4.32(C6.D4) = C4○D44Dic3central extension (φ=1)96C4.32(C6.D4)192,792
C4.33(C6.D4) = C2×Q83Dic3central extension (φ=1)48C4.33(C6.D4)192,794
C4.34(C6.D4) = (C6×D4).16C4central extension (φ=1)484C4.34(C6.D4)192,796
C4.35(C6.D4) = (C6×D4)⋊10C4central extension (φ=1)484C4.35(C6.D4)192,799

׿
×
𝔽