extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C6.D4) = D8⋊1Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.1(C6.D4) | 192,121 |
C4.2(C6.D4) = D8.Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.2(C6.D4) | 192,122 |
C4.3(C6.D4) = C6.5Q32 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.3(C6.D4) | 192,123 |
C4.4(C6.D4) = Q16.Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | 4 | C4.4(C6.D4) | 192,124 |
C4.5(C6.D4) = D8⋊2Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(C6.D4) | 192,125 |
C4.6(C6.D4) = C24.41D4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | 4 | C4.6(C6.D4) | 192,126 |
C4.7(C6.D4) = C2×D4⋊Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.7(C6.D4) | 192,773 |
C4.8(C6.D4) = (C6×D4)⋊6C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.8(C6.D4) | 192,774 |
C4.9(C6.D4) = C2×C12.D4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.9(C6.D4) | 192,775 |
C4.10(C6.D4) = C2×Q8⋊2Dic3 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.10(C6.D4) | 192,783 |
C4.11(C6.D4) = (C6×Q8)⋊6C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.11(C6.D4) | 192,784 |
C4.12(C6.D4) = C2×C12.10D4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.12(C6.D4) | 192,785 |
C4.13(C6.D4) = (C6×Q8)⋊7C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.13(C6.D4) | 192,788 |
C4.14(C6.D4) = (C6×D4).11C4 | φ: C6.D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.14(C6.D4) | 192,793 |
C4.15(C6.D4) = C12.9C42 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 192 | | C4.15(C6.D4) | 192,110 |
C4.16(C6.D4) = C12.10C42 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.16(C6.D4) | 192,111 |
C4.17(C6.D4) = M4(2)⋊Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.17(C6.D4) | 192,113 |
C4.18(C6.D4) = C12.20C42 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.18(C6.D4) | 192,116 |
C4.19(C6.D4) = M4(2)⋊4Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.19(C6.D4) | 192,118 |
C4.20(C6.D4) = C12.21C42 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.20(C6.D4) | 192,119 |
C4.21(C6.D4) = C24.6Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 48 | | C4.21(C6.D4) | 192,766 |
C4.22(C6.D4) = C4○D4⋊3Dic3 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.22(C6.D4) | 192,791 |
C4.23(C6.D4) = (C6×D4)⋊9C4 | φ: C6.D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.23(C6.D4) | 192,795 |
C4.24(C6.D4) = C24.98D4 | central extension (φ=1) | 96 | | C4.24(C6.D4) | 192,108 |
C4.25(C6.D4) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | C4.25(C6.D4) | 192,109 |
C4.26(C6.D4) = C24.D4 | central extension (φ=1) | 48 | 4 | C4.26(C6.D4) | 192,112 |
C4.27(C6.D4) = C12.3C42 | central extension (φ=1) | 48 | | C4.27(C6.D4) | 192,114 |
C4.28(C6.D4) = (C2×C24)⋊C4 | central extension (φ=1) | 48 | 4 | C4.28(C6.D4) | 192,115 |
C4.29(C6.D4) = C12.4C42 | central extension (φ=1) | 96 | | C4.29(C6.D4) | 192,117 |
C4.30(C6.D4) = C24.99D4 | central extension (φ=1) | 96 | 4 | C4.30(C6.D4) | 192,120 |
C4.31(C6.D4) = C2×C12.55D4 | central extension (φ=1) | 96 | | C4.31(C6.D4) | 192,765 |
C4.32(C6.D4) = C4○D4⋊4Dic3 | central extension (φ=1) | 96 | | C4.32(C6.D4) | 192,792 |
C4.33(C6.D4) = C2×Q8⋊3Dic3 | central extension (φ=1) | 48 | | C4.33(C6.D4) | 192,794 |
C4.34(C6.D4) = (C6×D4).16C4 | central extension (φ=1) | 48 | 4 | C4.34(C6.D4) | 192,796 |
C4.35(C6.D4) = (C6×D4)⋊10C4 | central extension (φ=1) | 48 | 4 | C4.35(C6.D4) | 192,799 |