Copied to
clipboard

G = C24.D4order 192 = 26·3

52nd non-split extension by C24 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.52D4, C12.25M4(2), (C2xC12).1C8, (C2xC24).2C4, (C2xC8).153D6, C3:2(C23.C8), C23.2(C3:C8), (C22xC6).2C8, (C2xC8).2Dic3, C8.33(C3:D4), (C22xC12).7C4, C12.C8:11C2, C6.18(C22:C8), (C2xM4(2)).4S3, (C6xM4(2)).6C2, C4.7(C4.Dic3), (C22xC4).7Dic3, C12.93(C22:C4), (C2xC24).265C22, C4.26(C6.D4), C2.7(C12.55D4), (C2xC4).(C3:C8), C22.4(C2xC3:C8), (C2xC6).32(C2xC8), (C2xC12).303(C2xC4), (C2xC4).75(C2xDic3), SmallGroup(192,112)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C24.D4
C1C3C6C12C24C2xC24C12.C8 — C24.D4
C3C6C2xC6 — C24.D4
C1C4C2xC8C2xM4(2)

Generators and relations for C24.D4
 G = < a,b,c | a24=1, b4=a18, c2=a9, bab-1=a5, cac-1=a17, cbc-1=a15b3 >

Subgroups: 104 in 58 conjugacy classes, 31 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, C23, C12, C12, C2xC6, C2xC6, C16, C2xC8, M4(2), C22xC4, C24, C24, C2xC12, C2xC12, C22xC6, M5(2), C2xM4(2), C3:C16, C2xC24, C3xM4(2), C22xC12, C23.C8, C12.C8, C6xM4(2), C24.D4
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, Dic3, D6, C22:C4, C2xC8, M4(2), C3:C8, C2xDic3, C3:D4, C22:C8, C2xC3:C8, C4.Dic3, C6.D4, C23.C8, C12.55D4, C24.D4

Smallest permutation representation of C24.D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 46 10 43 19 40 4 37 13 34 22 31 7 28 16 25)(2 27 11 48 20 45 5 42 14 39 23 36 8 33 17 30)(3 32 12 29 21 26 6 47 15 44 24 41 9 38 18 35)
(1 34 10 43 19 28 4 37 13 46 22 31 7 40 16 25)(2 27 11 36 20 45 5 30 14 39 23 48 8 33 17 42)(3 44 12 29 21 38 6 47 15 32 24 41 9 26 18 35)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,46,10,43,19,40,4,37,13,34,22,31,7,28,16,25)(2,27,11,48,20,45,5,42,14,39,23,36,8,33,17,30)(3,32,12,29,21,26,6,47,15,44,24,41,9,38,18,35), (1,34,10,43,19,28,4,37,13,46,22,31,7,40,16,25)(2,27,11,36,20,45,5,30,14,39,23,48,8,33,17,42)(3,44,12,29,21,38,6,47,15,32,24,41,9,26,18,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,46,10,43,19,40,4,37,13,34,22,31,7,28,16,25)(2,27,11,48,20,45,5,42,14,39,23,36,8,33,17,30)(3,32,12,29,21,26,6,47,15,44,24,41,9,38,18,35), (1,34,10,43,19,28,4,37,13,46,22,31,7,40,16,25)(2,27,11,36,20,45,5,30,14,39,23,48,8,33,17,42)(3,44,12,29,21,38,6,47,15,32,24,41,9,26,18,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,46,10,43,19,40,4,37,13,34,22,31,7,28,16,25),(2,27,11,48,20,45,5,42,14,39,23,36,8,33,17,30),(3,32,12,29,21,26,6,47,15,44,24,41,9,38,18,35)], [(1,34,10,43,19,28,4,37,13,46,22,31,7,40,16,25),(2,27,11,36,20,45,5,30,14,39,23,48,8,33,17,42),(3,44,12,29,21,38,6,47,15,32,24,41,9,26,18,35)]])

42 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D6A6B6C6D6E8A8B8C8D8E8F12A12B12C12D12E12F16A···16H24A···24H
order1222344446666688888812121212121216···1624···24
size1124211242224422224422224412···124···4

42 irreducible representations

dim1111111222222222244
type+++++-+-
imageC1C2C2C4C4C8C8S3D4Dic3D6Dic3M4(2)C3:D4C3:C8C3:C8C4.Dic3C23.C8C24.D4
kernelC24.D4C12.C8C6xM4(2)C2xC24C22xC12C2xC12C22xC6C2xM4(2)C24C2xC8C2xC8C22xC4C12C8C2xC4C23C4C3C1
# reps1212244121112422424

Matrix representation of C24.D4 in GL4(F97) generated by

611000
653600
003528
008562
,
00122
00096
963700
53100
,
0010
0001
15900
449600
G:=sub<GL(4,GF(97))| [61,65,0,0,10,36,0,0,0,0,35,85,0,0,28,62],[0,0,96,53,0,0,37,1,1,0,0,0,22,96,0,0],[0,0,1,44,0,0,59,96,1,0,0,0,0,1,0,0] >;

C24.D4 in GAP, Magma, Sage, TeX

C_{24}.D_4
% in TeX

G:=Group("C24.D4");
// GroupNames label

G:=SmallGroup(192,112);
// by ID

G=gap.SmallGroup(192,112);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,387,100,1123,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^4=a^18,c^2=a^9,b*a*b^-1=a^5,c*a*c^-1=a^17,c*b*c^-1=a^15*b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<