metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.11D8, C24.14D4, D8.2Dic3, (C3×D8).2C4, (C6×D8).1C2, (C2×D8).5S3, (C2×C8).49D6, C24.25(C2×C4), C12.C8⋊1C2, C24.C4⋊2C2, C8.1(C2×Dic3), C4.14(D4⋊S3), (C2×C12).115D4, C3⋊3(M5(2)⋊C2), C8.24(C3⋊D4), (C2×C6).30SD16, (C2×C24).29C22, C6.27(D4⋊C4), C12.14(C22⋊C4), C4.2(C6.D4), C2.7(D4⋊Dic3), C22.6(D4.S3), (C2×C4).24(C3⋊D4), SmallGroup(192,122)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8.Dic3
G = < a,b,c,d | a8=b2=1, c6=a4, d2=a4c3, bab=a-1, ac=ca, dad-1=a3, cbc-1=a4b, dbd-1=a5b, dcd-1=c5 >
Subgroups: 184 in 62 conjugacy classes, 27 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C8, C2×C4, D4, C23, C12, C2×C6, C2×C6, C16, C2×C8, M4(2), D8, D8, C2×D4, C3⋊C8, C24, C2×C12, C3×D4, C22×C6, C8.C4, M5(2), C2×D8, C3⋊C16, C4.Dic3, C2×C24, C3×D8, C3×D8, C6×D4, M5(2)⋊C2, C12.C8, C24.C4, C6×D8, D8.Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D8, SD16, C2×Dic3, C3⋊D4, D4⋊C4, D4⋊S3, D4.S3, C6.D4, M5(2)⋊C2, D4⋊Dic3, D8.Dic3
Character table of D8.Dic3
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 8E | 12A | 12B | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 4 | 24 | 24 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -i | 1 | -1 | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | i | 1 | -1 | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | 1 | -1 | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | 1 | -1 | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -1 | 2 | -2 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -2 | -2 | 2 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | 2 | -2 | 2 | -2 | -1 | 2 | -2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | √-3 | -√-3 | √-3 | -√-3 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -√-3 | √-3 | -√-3 | √-3 | -2 | -2 | -2 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -1 | √-3 | √-3 | -√-3 | -√-3 | 2 | 2 | -2 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -1 | -√-3 | -√-3 | √-3 | √-3 | 2 | 2 | -2 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | -2 | -4 | 4 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | orthogonal lifted from M5(2)⋊C2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | orthogonal lifted from M5(2)⋊C2 |
ρ26 | 4 | 4 | 4 | 0 | 0 | -2 | -4 | -4 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-6 | -√2 | -√-6 | √2 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-6 | √2 | √-6 | -√2 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-6 | -√2 | √-6 | √2 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-6 | √2 | -√-6 | -√2 | complex faithful |
(1 22 10 19 7 16 4 13)(2 23 11 20 8 17 5 14)(3 24 12 21 9 18 6 15)(25 37 28 40 31 43 34 46)(26 38 29 41 32 44 35 47)(27 39 30 42 33 45 36 48)
(1 13)(2 20)(3 15)(4 22)(5 17)(6 24)(7 19)(8 14)(9 21)(10 16)(11 23)(12 18)(25 34)(26 29)(27 36)(28 31)(30 33)(32 35)(37 43)(39 45)(41 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 31 10 28 7 25 4 34)(2 36 11 33 8 30 5 27)(3 29 12 26 9 35 6 32)(13 37 22 46 19 43 16 40)(14 42 23 39 20 48 17 45)(15 47 24 44 21 41 18 38)
G:=sub<Sym(48)| (1,22,10,19,7,16,4,13)(2,23,11,20,8,17,5,14)(3,24,12,21,9,18,6,15)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,13)(2,20)(3,15)(4,22)(5,17)(6,24)(7,19)(8,14)(9,21)(10,16)(11,23)(12,18)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,43)(39,45)(41,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,7,25,4,34)(2,36,11,33,8,30,5,27)(3,29,12,26,9,35,6,32)(13,37,22,46,19,43,16,40)(14,42,23,39,20,48,17,45)(15,47,24,44,21,41,18,38)>;
G:=Group( (1,22,10,19,7,16,4,13)(2,23,11,20,8,17,5,14)(3,24,12,21,9,18,6,15)(25,37,28,40,31,43,34,46)(26,38,29,41,32,44,35,47)(27,39,30,42,33,45,36,48), (1,13)(2,20)(3,15)(4,22)(5,17)(6,24)(7,19)(8,14)(9,21)(10,16)(11,23)(12,18)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,43)(39,45)(41,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,7,25,4,34)(2,36,11,33,8,30,5,27)(3,29,12,26,9,35,6,32)(13,37,22,46,19,43,16,40)(14,42,23,39,20,48,17,45)(15,47,24,44,21,41,18,38) );
G=PermutationGroup([[(1,22,10,19,7,16,4,13),(2,23,11,20,8,17,5,14),(3,24,12,21,9,18,6,15),(25,37,28,40,31,43,34,46),(26,38,29,41,32,44,35,47),(27,39,30,42,33,45,36,48)], [(1,13),(2,20),(3,15),(4,22),(5,17),(6,24),(7,19),(8,14),(9,21),(10,16),(11,23),(12,18),(25,34),(26,29),(27,36),(28,31),(30,33),(32,35),(37,43),(39,45),(41,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31,10,28,7,25,4,34),(2,36,11,33,8,30,5,27),(3,29,12,26,9,35,6,32),(13,37,22,46,19,43,16,40),(14,42,23,39,20,48,17,45),(15,47,24,44,21,41,18,38)]])
Matrix representation of D8.Dic3 ►in GL4(𝔽7) generated by
5 | 1 | 0 | 1 |
2 | 5 | 5 | 1 |
0 | 3 | 0 | 5 |
6 | 2 | 1 | 4 |
4 | 5 | 0 | 3 |
1 | 6 | 5 | 5 |
0 | 4 | 0 | 2 |
5 | 2 | 1 | 4 |
3 | 6 | 6 | 6 |
3 | 0 | 3 | 6 |
4 | 0 | 5 | 3 |
3 | 5 | 3 | 6 |
4 | 0 | 4 | 3 |
0 | 4 | 4 | 2 |
2 | 6 | 6 | 6 |
5 | 3 | 3 | 0 |
G:=sub<GL(4,GF(7))| [5,2,0,6,1,5,3,2,0,5,0,1,1,1,5,4],[4,1,0,5,5,6,4,2,0,5,0,1,3,5,2,4],[3,3,4,3,6,0,0,5,6,3,5,3,6,6,3,6],[4,0,2,5,0,4,6,3,4,4,6,3,3,2,6,0] >;
D8.Dic3 in GAP, Magma, Sage, TeX
D_8.{\rm Dic}_3
% in TeX
G:=Group("D8.Dic3");
// GroupNames label
G:=SmallGroup(192,122);
// by ID
G=gap.SmallGroup(192,122);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,387,184,675,794,80,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^6=a^4,d^2=a^4*c^3,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,c*b*c^-1=a^4*b,d*b*d^-1=a^5*b,d*c*d^-1=c^5>;
// generators/relations
Export