# Extensions 1→N→G→Q→1 with N=C3×2+ 1+4 and Q=C2

Direct product G=N×Q with N=C3×2+ 1+4 and Q=C2
dρLabelID
C6×2+ 1+448C6xES+(2,2)192,1534

Semidirect products G=N:Q with N=C3×2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2+ 1+4)⋊1C2 = 2+ 1+46S3φ: C2/C1C2 ⊆ Out C3×2+ 1+4248+(C3xES+(2,2)):1C2192,800
(C3×2+ 1+4)⋊2C2 = D12.32C23φ: C2/C1C2 ⊆ Out C3×2+ 1+4488+(C3xES+(2,2)):2C2192,1394
(C3×2+ 1+4)⋊3C2 = D12.33C23φ: C2/C1C2 ⊆ Out C3×2+ 1+4488-(C3xES+(2,2)):3C2192,1395
(C3×2+ 1+4)⋊4C2 = S3×2+ 1+4φ: C2/C1C2 ⊆ Out C3×2+ 1+4248+(C3xES+(2,2)):4C2192,1524
(C3×2+ 1+4)⋊5C2 = D6.C24φ: C2/C1C2 ⊆ Out C3×2+ 1+4488-(C3xES+(2,2)):5C2192,1525
(C3×2+ 1+4)⋊6C2 = 2+ 1+47S3φ: C2/C1C2 ⊆ Out C3×2+ 1+4248+(C3xES+(2,2)):6C2192,803
(C3×2+ 1+4)⋊7C2 = C3×D44D4φ: C2/C1C2 ⊆ Out C3×2+ 1+4244(C3xES+(2,2)):7C2192,886
(C3×2+ 1+4)⋊8C2 = C3×C2≀C22φ: C2/C1C2 ⊆ Out C3×2+ 1+4244(C3xES+(2,2)):8C2192,890
(C3×2+ 1+4)⋊9C2 = C3×D4○D8φ: C2/C1C2 ⊆ Out C3×2+ 1+4484(C3xES+(2,2)):9C2192,1465
(C3×2+ 1+4)⋊10C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C3×2+ 1+4484(C3xES+(2,2)):10C2192,1466
(C3×2+ 1+4)⋊11C2 = C3×C2.C25φ: trivial image484(C3xES+(2,2)):11C2192,1536

Non-split extensions G=N.Q with N=C3×2+ 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2+ 1+4).1C2 = 2+ 1+4.4S3φ: C2/C1C2 ⊆ Out C3×2+ 1+4488-(C3xES+(2,2)).1C2192,801
(C3×2+ 1+4).2C2 = 2+ 1+4.5S3φ: C2/C1C2 ⊆ Out C3×2+ 1+4488-(C3xES+(2,2)).2C2192,802
(C3×2+ 1+4).3C2 = C3×D4.9D4φ: C2/C1C2 ⊆ Out C3×2+ 1+4484(C3xES+(2,2)).3C2192,888
(C3×2+ 1+4).4C2 = C3×C23.7D4φ: C2/C1C2 ⊆ Out C3×2+ 1+4484(C3xES+(2,2)).4C2192,891

׿
×
𝔽