Copied to
clipboard

G = C3×D4○SD16order 192 = 26·3

Direct product of C3 and D4○SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D4○SD16, C24.49C23, C12.86C24, 2+ 1+49C6, 2- 1+45C6, C4○D85C6, C8○D48C6, D85(C2×C6), C8⋊C225C6, Q165(C2×C6), C4.46(C6×D4), SD166(C2×C6), (C2×SD16)⋊6C6, D4.12(C3×D4), (C3×D4).46D4, C8.C224C6, C4.9(C23×C6), (C3×Q8).46D4, Q8.17(C3×D4), C22.8(C6×D4), (C2×C24)⋊24C22, (C6×SD16)⋊17C2, C12.407(C2×D4), (C3×D8)⋊22C22, M4(2)⋊7(C2×C6), C8.13(C22×C6), (C6×Q8)⋊32C22, D4.6(C22×C6), (C3×Q16)⋊19C22, (C3×D4).39C23, C6.207(C22×D4), Q8.10(C22×C6), (C3×Q8).40C23, (C2×C12).688C23, (C3×SD16)⋊21C22, (C6×D4).226C22, (C3×2- 1+4)⋊7C2, (C3×M4(2))⋊28C22, (C3×2+ 1+4)⋊10C2, (C2×C8)⋊5(C2×C6), C2.31(D4×C2×C6), (C3×C8○D4)⋊9C2, C4○D43(C2×C6), (C2×Q8)⋊8(C2×C6), (C3×C4○D8)⋊12C2, (C3×C8⋊C22)⋊12C2, (C2×D4).39(C2×C6), (C2×C6).185(C2×D4), (C3×C4○D4)⋊15C22, (C3×C8.C22)⋊11C2, (C2×C4).49(C22×C6), SmallGroup(192,1466)

Series: Derived Chief Lower central Upper central

C1C4 — C3×D4○SD16
C1C2C4C12C3×Q8C3×SD16C6×SD16 — C3×D4○SD16
C1C2C4 — C3×D4○SD16
C1C6C3×C4○D4 — C3×D4○SD16

Generators and relations for C3×D4○SD16
 G = < a,b,c,d,e | a3=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 410 in 258 conjugacy classes, 158 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, C23, C12, C12, C12, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, SD16, Q16, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C22×C6, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C2×C24, C3×M4(2), C3×D8, C3×SD16, C3×SD16, C3×Q16, C6×D4, C6×D4, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, C3×C4○D4, D4○SD16, C3×C8○D4, C6×SD16, C3×C4○D8, C3×C8⋊C22, C3×C8.C22, C3×2+ 1+4, C3×2- 1+4, C3×D4○SD16
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, C6×D4, C23×C6, D4○SD16, D4×C2×C6, C3×D4○SD16

Smallest permutation representation of C3×D4○SD16
On 48 points
Generators in S48
(1 33 18)(2 34 19)(3 35 20)(4 36 21)(5 37 22)(6 38 23)(7 39 24)(8 40 17)(9 42 29)(10 43 30)(11 44 31)(12 45 32)(13 46 25)(14 47 26)(15 48 27)(16 41 28)
(1 47 5 43)(2 48 6 44)(3 41 7 45)(4 42 8 46)(9 17 13 21)(10 18 14 22)(11 19 15 23)(12 20 16 24)(25 36 29 40)(26 37 30 33)(27 38 31 34)(28 39 32 35)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 23)(19 21)(20 24)(25 31)(27 29)(28 32)(34 36)(35 39)(38 40)(41 45)(42 48)(44 46)

G:=sub<Sym(48)| (1,33,18)(2,34,19)(3,35,20)(4,36,21)(5,37,22)(6,38,23)(7,39,24)(8,40,17)(9,42,29)(10,43,30)(11,44,31)(12,45,32)(13,46,25)(14,47,26)(15,48,27)(16,41,28), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,17,13,21)(10,18,14,22)(11,19,15,23)(12,20,16,24)(25,36,29,40)(26,37,30,33)(27,38,31,34)(28,39,32,35), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(34,36)(35,39)(38,40)(41,45)(42,48)(44,46)>;

G:=Group( (1,33,18)(2,34,19)(3,35,20)(4,36,21)(5,37,22)(6,38,23)(7,39,24)(8,40,17)(9,42,29)(10,43,30)(11,44,31)(12,45,32)(13,46,25)(14,47,26)(15,48,27)(16,41,28), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,17,13,21)(10,18,14,22)(11,19,15,23)(12,20,16,24)(25,36,29,40)(26,37,30,33)(27,38,31,34)(28,39,32,35), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(34,36)(35,39)(38,40)(41,45)(42,48)(44,46) );

G=PermutationGroup([[(1,33,18),(2,34,19),(3,35,20),(4,36,21),(5,37,22),(6,38,23),(7,39,24),(8,40,17),(9,42,29),(10,43,30),(11,44,31),(12,45,32),(13,46,25),(14,47,26),(15,48,27),(16,41,28)], [(1,47,5,43),(2,48,6,44),(3,41,7,45),(4,42,8,46),(9,17,13,21),(10,18,14,22),(11,19,15,23),(12,20,16,24),(25,36,29,40),(26,37,30,33),(27,38,31,34),(28,39,32,35)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,23),(19,21),(20,24),(25,31),(27,29),(28,32),(34,36),(35,39),(38,40),(41,45),(42,48),(44,46)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H3A3B4A4B4C4D4E4F4G4H6A6B6C···6H6I···6P8A8B8C8D8E12A···12H12I···12P24A24B24C24D24E···24J
order1222222223344444444666···66···68888812···1212···122424242424···24
size1122244441122224444112···24···4224442···24···422224···4

66 irreducible representations

dim1111111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D4D4C3×D4C3×D4D4○SD16C3×D4○SD16
kernelC3×D4○SD16C3×C8○D4C6×SD16C3×C4○D8C3×C8⋊C22C3×C8.C22C3×2+ 1+4C3×2- 1+4D4○SD16C8○D4C2×SD16C4○D8C8⋊C22C8.C222+ 1+42- 1+4C3×D4C3×Q8D4Q8C3C1
# reps1133331122666622316224

Matrix representation of C3×D4○SD16 in GL4(𝔽73) generated by

64000
06400
00640
00064
,
0010
0001
72000
07200
,
0010
0001
1000
0100
,
66700
6600
00667
0066
,
1000
07200
0010
00072
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[6,6,0,0,67,6,0,0,0,0,6,6,0,0,67,6],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,72] >;

C3×D4○SD16 in GAP, Magma, Sage, TeX

C_3\times D_4\circ {\rm SD}_{16}
% in TeX

G:=Group("C3xD4oSD16");
// GroupNames label

G:=SmallGroup(192,1466);
// by ID

G=gap.SmallGroup(192,1466);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,745,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽