Extensions 1→N→G→Q→1 with N=C4 and Q=C3xD8

Direct product G=NxQ with N=C4 and Q=C3xD8
dρLabelID
C12xD896C12xD8192,870

Semidirect products G=N:Q with N=C4 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C4:1(C3xD8) = C3xC8:4D4φ: C3xD8/C24C2 ⊆ Aut C496C4:1(C3xD8)192,926
C4:2(C3xD8) = C3xC4:D8φ: C3xD8/C3xD4C2 ⊆ Aut C496C4:2(C3xD8)192,892

Non-split extensions G=N.Q with N=C4 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C4.1(C3xD8) = C3xD32φ: C3xD8/C24C2 ⊆ Aut C4962C4.1(C3xD8)192,177
C4.2(C3xD8) = C3xSD64φ: C3xD8/C24C2 ⊆ Aut C4962C4.2(C3xD8)192,178
C4.3(C3xD8) = C3xQ64φ: C3xD8/C24C2 ⊆ Aut C41922C4.3(C3xD8)192,179
C4.4(C3xD8) = C3xC4.4D8φ: C3xD8/C24C2 ⊆ Aut C496C4.4(C3xD8)192,919
C4.5(C3xD8) = C3xC8:2Q8φ: C3xD8/C24C2 ⊆ Aut C4192C4.5(C3xD8)192,933
C4.6(C3xD8) = C6xD16φ: C3xD8/C24C2 ⊆ Aut C496C4.6(C3xD8)192,938
C4.7(C3xD8) = C6xSD32φ: C3xD8/C24C2 ⊆ Aut C496C4.7(C3xD8)192,939
C4.8(C3xD8) = C6xQ32φ: C3xD8/C24C2 ⊆ Aut C4192C4.8(C3xD8)192,940
C4.9(C3xD8) = C3xC4.D8φ: C3xD8/C3xD4C2 ⊆ Aut C496C4.9(C3xD8)192,137
C4.10(C3xD8) = C3xC4.10D8φ: C3xD8/C3xD4C2 ⊆ Aut C4192C4.10(C3xD8)192,138
C4.11(C3xD8) = C3xM5(2):C2φ: C3xD8/C3xD4C2 ⊆ Aut C4484C4.11(C3xD8)192,167
C4.12(C3xD8) = C3xC8.17D4φ: C3xD8/C3xD4C2 ⊆ Aut C4964C4.12(C3xD8)192,168
C4.13(C3xD8) = C3xD4:Q8φ: C3xD8/C3xD4C2 ⊆ Aut C496C4.13(C3xD8)192,907
C4.14(C3xD8) = C3xC16:C22φ: C3xD8/C3xD4C2 ⊆ Aut C4484C4.14(C3xD8)192,942
C4.15(C3xD8) = C3xQ32:C2φ: C3xD8/C3xD4C2 ⊆ Aut C4964C4.15(C3xD8)192,943
C4.16(C3xD8) = C3xD4:C8central extension (φ=1)96C4.16(C3xD8)192,131
C4.17(C3xD8) = C3xC8:1C8central extension (φ=1)192C4.17(C3xD8)192,141
C4.18(C3xD8) = C3xD8.C4central extension (φ=1)962C4.18(C3xD8)192,165
C4.19(C3xD8) = C3xC8.4Q8central extension (φ=1)962C4.19(C3xD8)192,174
C4.20(C3xD8) = C3xC4oD16central extension (φ=1)962C4.20(C3xD8)192,941

׿
x
:
Z
F
o
wr
Q
<