direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×D4⋊Q8, C12.64D8, C4⋊C8⋊4C6, C4⋊Q8⋊3C6, D4⋊1(C3×Q8), (C3×D4)⋊8Q8, C2.D8⋊4C6, C2.7(C6×D8), (C4×D4).7C6, C4.13(C3×D8), C6.79(C2×D8), C4.12(C6×Q8), D4⋊C4.3C6, (D4×C12).22C2, (C2×C12).330D4, C42.20(C2×C6), C12.118(C2×Q8), C22.95(C6×D4), C6.93(C22⋊Q8), C12.311(C4○D4), (C2×C24).187C22, (C4×C12).262C22, (C2×C12).930C23, (C6×D4).298C22, C6.139(C8.C22), (C3×C4⋊C8)⋊14C2, (C2×C8).6(C2×C6), (C3×C4⋊Q8)⋊24C2, C4⋊C4.11(C2×C6), (C3×C2.D8)⋊19C2, C4.23(C3×C4○D4), (C2×D4).58(C2×C6), (C2×C6).651(C2×D4), (C2×C4).131(C3×D4), C2.12(C3×C22⋊Q8), (C3×D4⋊C4).8C2, C2.14(C3×C8.C22), (C3×C4⋊C4).233C22, (C2×C4).105(C22×C6), SmallGroup(192,907)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C4 — C2×C4 — C2×C12 — C3×C4⋊C4 — C3×C4⋊Q8 — C3×D4⋊Q8 |
Generators and relations for C3×D4⋊Q8
G = < a,b,c,d,e | a3=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >
Subgroups: 202 in 108 conjugacy classes, 58 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C12, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×Q8, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C6×D4, C6×Q8, D4⋊Q8, C3×D4⋊C4, C3×C4⋊C8, C3×C2.D8, D4×C12, C3×C4⋊Q8, C3×D4⋊Q8
Quotients: C1, C2, C3, C22, C6, D4, Q8, C23, C2×C6, D8, C2×D4, C2×Q8, C4○D4, C3×D4, C3×Q8, C22×C6, C22⋊Q8, C2×D8, C8.C22, C3×D8, C6×D4, C6×Q8, C3×C4○D4, D4⋊Q8, C3×C22⋊Q8, C6×D8, C3×C8.C22, C3×D4⋊Q8
(1 19 11)(2 20 12)(3 17 9)(4 18 10)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(49 65 57)(50 66 58)(51 67 59)(52 68 60)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(73 89 81)(74 90 82)(75 91 83)(76 92 84)(77 93 85)(78 94 86)(79 95 87)(80 96 88)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 6)(2 5)(3 8)(4 7)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)(20 21)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)(36 37)(41 48)(42 47)(43 46)(44 45)(49 55)(50 54)(51 53)(52 56)(57 63)(58 62)(59 61)(60 64)(65 71)(66 70)(67 69)(68 72)(73 79)(74 78)(75 77)(76 80)(81 87)(82 86)(83 85)(84 88)(89 95)(90 94)(91 93)(92 96)
(1 31 7 27)(2 32 8 28)(3 29 5 25)(4 30 6 26)(9 37 13 33)(10 38 14 34)(11 39 15 35)(12 40 16 36)(17 45 21 41)(18 46 22 42)(19 47 23 43)(20 48 24 44)(49 73 53 77)(50 74 54 78)(51 75 55 79)(52 76 56 80)(57 81 61 85)(58 82 62 86)(59 83 63 87)(60 84 64 88)(65 89 69 93)(66 90 70 94)(67 91 71 95)(68 92 72 96)
(1 53 7 49)(2 56 8 52)(3 55 5 51)(4 54 6 50)(9 63 13 59)(10 62 14 58)(11 61 15 57)(12 64 16 60)(17 71 21 67)(18 70 22 66)(19 69 23 65)(20 72 24 68)(25 79 29 75)(26 78 30 74)(27 77 31 73)(28 80 32 76)(33 87 37 83)(34 86 38 82)(35 85 39 81)(36 88 40 84)(41 95 45 91)(42 94 46 90)(43 93 47 89)(44 96 48 92)
G:=sub<Sym(96)| (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(49,65,57)(50,66,58)(51,67,59)(52,68,60)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,40)(34,39)(35,38)(36,37)(41,48)(42,47)(43,46)(44,45)(49,55)(50,54)(51,53)(52,56)(57,63)(58,62)(59,61)(60,64)(65,71)(66,70)(67,69)(68,72)(73,79)(74,78)(75,77)(76,80)(81,87)(82,86)(83,85)(84,88)(89,95)(90,94)(91,93)(92,96), (1,31,7,27)(2,32,8,28)(3,29,5,25)(4,30,6,26)(9,37,13,33)(10,38,14,34)(11,39,15,35)(12,40,16,36)(17,45,21,41)(18,46,22,42)(19,47,23,43)(20,48,24,44)(49,73,53,77)(50,74,54,78)(51,75,55,79)(52,76,56,80)(57,81,61,85)(58,82,62,86)(59,83,63,87)(60,84,64,88)(65,89,69,93)(66,90,70,94)(67,91,71,95)(68,92,72,96), (1,53,7,49)(2,56,8,52)(3,55,5,51)(4,54,6,50)(9,63,13,59)(10,62,14,58)(11,61,15,57)(12,64,16,60)(17,71,21,67)(18,70,22,66)(19,69,23,65)(20,72,24,68)(25,79,29,75)(26,78,30,74)(27,77,31,73)(28,80,32,76)(33,87,37,83)(34,86,38,82)(35,85,39,81)(36,88,40,84)(41,95,45,91)(42,94,46,90)(43,93,47,89)(44,96,48,92)>;
G:=Group( (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(49,65,57)(50,66,58)(51,67,59)(52,68,60)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,6)(2,5)(3,8)(4,7)(9,16)(10,15)(11,14)(12,13)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,40)(34,39)(35,38)(36,37)(41,48)(42,47)(43,46)(44,45)(49,55)(50,54)(51,53)(52,56)(57,63)(58,62)(59,61)(60,64)(65,71)(66,70)(67,69)(68,72)(73,79)(74,78)(75,77)(76,80)(81,87)(82,86)(83,85)(84,88)(89,95)(90,94)(91,93)(92,96), (1,31,7,27)(2,32,8,28)(3,29,5,25)(4,30,6,26)(9,37,13,33)(10,38,14,34)(11,39,15,35)(12,40,16,36)(17,45,21,41)(18,46,22,42)(19,47,23,43)(20,48,24,44)(49,73,53,77)(50,74,54,78)(51,75,55,79)(52,76,56,80)(57,81,61,85)(58,82,62,86)(59,83,63,87)(60,84,64,88)(65,89,69,93)(66,90,70,94)(67,91,71,95)(68,92,72,96), (1,53,7,49)(2,56,8,52)(3,55,5,51)(4,54,6,50)(9,63,13,59)(10,62,14,58)(11,61,15,57)(12,64,16,60)(17,71,21,67)(18,70,22,66)(19,69,23,65)(20,72,24,68)(25,79,29,75)(26,78,30,74)(27,77,31,73)(28,80,32,76)(33,87,37,83)(34,86,38,82)(35,85,39,81)(36,88,40,84)(41,95,45,91)(42,94,46,90)(43,93,47,89)(44,96,48,92) );
G=PermutationGroup([[(1,19,11),(2,20,12),(3,17,9),(4,18,10),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(49,65,57),(50,66,58),(51,67,59),(52,68,60),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(73,89,81),(74,90,82),(75,91,83),(76,92,84),(77,93,85),(78,94,86),(79,95,87),(80,96,88)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,6),(2,5),(3,8),(4,7),(9,16),(10,15),(11,14),(12,13),(17,24),(18,23),(19,22),(20,21),(25,32),(26,31),(27,30),(28,29),(33,40),(34,39),(35,38),(36,37),(41,48),(42,47),(43,46),(44,45),(49,55),(50,54),(51,53),(52,56),(57,63),(58,62),(59,61),(60,64),(65,71),(66,70),(67,69),(68,72),(73,79),(74,78),(75,77),(76,80),(81,87),(82,86),(83,85),(84,88),(89,95),(90,94),(91,93),(92,96)], [(1,31,7,27),(2,32,8,28),(3,29,5,25),(4,30,6,26),(9,37,13,33),(10,38,14,34),(11,39,15,35),(12,40,16,36),(17,45,21,41),(18,46,22,42),(19,47,23,43),(20,48,24,44),(49,73,53,77),(50,74,54,78),(51,75,55,79),(52,76,56,80),(57,81,61,85),(58,82,62,86),(59,83,63,87),(60,84,64,88),(65,89,69,93),(66,90,70,94),(67,91,71,95),(68,92,72,96)], [(1,53,7,49),(2,56,8,52),(3,55,5,51),(4,54,6,50),(9,63,13,59),(10,62,14,58),(11,61,15,57),(12,64,16,60),(17,71,21,67),(18,70,22,66),(19,69,23,65),(20,72,24,68),(25,79,29,75),(26,78,30,74),(27,77,31,73),(28,80,32,76),(33,87,37,83),(34,86,38,82),(35,85,39,81),(36,88,40,84),(41,95,45,91),(42,94,46,90),(43,93,47,89),(44,96,48,92)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | ··· | 12H | 12I | ··· | 12N | 12O | 12P | 12Q | 12R | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | - | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | Q8 | D8 | C4○D4 | C3×D4 | C3×Q8 | C3×D8 | C3×C4○D4 | C8.C22 | C3×C8.C22 |
kernel | C3×D4⋊Q8 | C3×D4⋊C4 | C3×C4⋊C8 | C3×C2.D8 | D4×C12 | C3×C4⋊Q8 | D4⋊Q8 | D4⋊C4 | C4⋊C8 | C2.D8 | C4×D4 | C4⋊Q8 | C2×C12 | C3×D4 | C12 | C12 | C2×C4 | D4 | C4 | C4 | C6 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 1 | 2 |
Matrix representation of C3×D4⋊Q8 ►in GL4(𝔽73) generated by
64 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 8 |
72 | 1 | 0 | 0 |
71 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 72 | 0 |
32 | 57 | 0 | 0 |
32 | 41 | 0 | 0 |
0 | 0 | 52 | 54 |
0 | 0 | 54 | 21 |
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,8,0,0,0,0,8],[72,71,0,0,1,1,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,1,1,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,0,72,0,0,1,0],[32,32,0,0,57,41,0,0,0,0,52,54,0,0,54,21] >;
C3×D4⋊Q8 in GAP, Magma, Sage, TeX
C_3\times D_4\rtimes Q_8
% in TeX
G:=Group("C3xD4:Q8");
// GroupNames label
G:=SmallGroup(192,907);
// by ID
G=gap.SmallGroup(192,907);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,168,365,176,1094,6053,1531,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations