Copied to
clipboard

G = C3×M5(2)⋊C2order 192 = 26·3

Direct product of C3 and M5(2)⋊C2

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×M5(2)⋊C2, D8.2C12, C12.62D8, C24.90D4, M5(2)⋊6C6, C8.2(C2×C12), (C2×D8).5C6, (C3×D8).4C4, C8.16(C3×D4), C4.11(C3×D8), C8.C42C6, C24.37(C2×C4), (C6×D8).12C2, (C2×C12).280D4, (C2×C6).24SD16, (C3×M5(2))⋊14C2, C6.41(D4⋊C4), C22.3(C3×SD16), C12.73(C22⋊C4), (C2×C24).194C22, (C2×C8).13(C2×C6), (C2×C4).11(C3×D4), C4.5(C3×C22⋊C4), (C3×C8.C4)⋊11C2, C2.10(C3×D4⋊C4), SmallGroup(192,167)

Series: Derived Chief Lower central Upper central

C1C8 — C3×M5(2)⋊C2
C1C2C4C2×C4C2×C8C2×C24C3×C8.C4 — C3×M5(2)⋊C2
C1C2C4C8 — C3×M5(2)⋊C2
C1C6C2×C12C2×C24 — C3×M5(2)⋊C2

Generators and relations for C3×M5(2)⋊C2
 G = < a,b,c,d | a3=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b9, dbd=b3c, cd=dc >

Subgroups: 162 in 62 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C8, C2×C4, D4, C23, C12, C2×C6, C2×C6, C16, C2×C8, M4(2), D8, D8, C2×D4, C24, C24, C2×C12, C3×D4, C22×C6, C8.C4, M5(2), C2×D8, C48, C2×C24, C3×M4(2), C3×D8, C3×D8, C6×D4, M5(2)⋊C2, C3×C8.C4, C3×M5(2), C6×D8, C3×M5(2)⋊C2
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, C2×C12, C3×D4, D4⋊C4, C3×C22⋊C4, C3×D8, C3×SD16, M5(2)⋊C2, C3×D4⋊C4, C3×M5(2)⋊C2

Smallest permutation representation of C3×M5(2)⋊C2
On 48 points
Generators in S48
(1 42 17)(2 43 18)(3 44 19)(4 45 20)(5 46 21)(6 47 22)(7 48 23)(8 33 24)(9 34 25)(10 35 26)(11 36 27)(12 37 28)(13 38 29)(14 39 30)(15 40 31)(16 41 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(33 41)(35 43)(37 45)(39 47)
(2 12)(3 15)(4 10)(5 13)(6 8)(7 11)(14 16)(18 28)(19 31)(20 26)(21 29)(22 24)(23 27)(30 32)(33 47)(35 45)(36 48)(37 43)(38 46)(39 41)(40 44)

G:=sub<Sym(48)| (1,42,17)(2,43,18)(3,44,19)(4,45,20)(5,46,21)(6,47,22)(7,48,23)(8,33,24)(9,34,25)(10,35,26)(11,36,27)(12,37,28)(13,38,29)(14,39,30)(15,40,31)(16,41,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(18,28)(19,31)(20,26)(21,29)(22,24)(23,27)(30,32)(33,47)(35,45)(36,48)(37,43)(38,46)(39,41)(40,44)>;

G:=Group( (1,42,17)(2,43,18)(3,44,19)(4,45,20)(5,46,21)(6,47,22)(7,48,23)(8,33,24)(9,34,25)(10,35,26)(11,36,27)(12,37,28)(13,38,29)(14,39,30)(15,40,31)(16,41,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(18,28)(19,31)(20,26)(21,29)(22,24)(23,27)(30,32)(33,47)(35,45)(36,48)(37,43)(38,46)(39,41)(40,44) );

G=PermutationGroup([[(1,42,17),(2,43,18),(3,44,19),(4,45,20),(5,46,21),(6,47,22),(7,48,23),(8,33,24),(9,34,25),(10,35,26),(11,36,27),(12,37,28),(13,38,29),(14,39,30),(15,40,31),(16,41,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(33,41),(35,43),(37,45),(39,47)], [(2,12),(3,15),(4,10),(5,13),(6,8),(7,11),(14,16),(18,28),(19,31),(20,26),(21,29),(22,24),(23,27),(30,32),(33,47),(35,45),(36,48),(37,43),(38,46),(39,41),(40,44)]])

48 conjugacy classes

class 1 2A2B2C2D3A3B4A4B6A6B6C6D6E6F6G6H8A8B8C8D8E12A12B12C12D16A16B16C16D24A24B24C24D24E24F24G24H24I24J48A···48H
order122223344666666668888812121212161616162424242424242424242448···48
size11288112211228888224882222444422224488884···4

48 irreducible representations

dim11111111112222222244
type++++++++
imageC1C2C2C2C3C4C6C6C6C12D4D4D8SD16C3×D4C3×D4C3×D8C3×SD16M5(2)⋊C2C3×M5(2)⋊C2
kernelC3×M5(2)⋊C2C3×C8.C4C3×M5(2)C6×D8M5(2)⋊C2C3×D8C8.C4M5(2)C2×D8D8C24C2×C12C12C2×C6C8C2×C4C4C22C3C1
# reps11112422281122224424

Matrix representation of C3×M5(2)⋊C2 in GL4(𝔽7) generated by

2000
0200
0020
0002
,
4161
1211
0253
2553
,
1063
0232
0322
0112
,
1063
0545
0441
0644
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[4,1,0,2,1,2,2,5,6,1,5,5,1,1,3,3],[1,0,0,0,0,2,3,1,6,3,2,1,3,2,2,2],[1,0,0,0,0,5,4,6,6,4,4,4,3,5,1,4] >;

C3×M5(2)⋊C2 in GAP, Magma, Sage, TeX

C_3\times M_5(2)\rtimes C_2
% in TeX

G:=Group("C3xM5(2):C2");
// GroupNames label

G:=SmallGroup(192,167);
// by ID

G=gap.SmallGroup(192,167);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,2194,136,2111,172,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^9,d*b*d=b^3*c,c*d=d*c>;
// generators/relations

׿
×
𝔽