Copied to
clipboard

G = C3xD8.C4order 192 = 26·3

Direct product of C3 and D8.C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3xD8.C4, D8.1C12, C12.69D8, C24.101D4, Q16.1C12, (C2xC16):4C6, (C2xC48):8C2, C8.9(C2xC12), C4oD8.1C6, (C3xD8).3C4, C4.18(C3xD8), C8.21(C3xD4), C8.C4:1C6, C24.55(C2xC4), (C3xQ16).3C4, (C2xC12).407D4, (C2xC6).17SD16, C6.39(D4:C4), C22.1(C3xSD16), C12.71(C22:C4), (C2xC24).408C22, (C2xC8).88(C2xC6), (C3xC4oD8).6C2, (C2xC4).61(C3xD4), C4.3(C3xC22:C4), C2.8(C3xD4:C4), (C3xC8.C4):10C2, SmallGroup(192,165)

Series: Derived Chief Lower central Upper central

C1C8 — C3xD8.C4
C1C2C4C2xC4C2xC8C2xC24C3xC8.C4 — C3xD8.C4
C1C2C4C8 — C3xD8.C4
C1C12C2xC12C2xC24 — C3xD8.C4

Generators and relations for C3xD8.C4
 G = < a,b,c,d | a3=b8=c2=1, d4=b4, ab=ba, ac=ca, ad=da, cbc=dbd-1=b-1, dcd-1=b5c >

Subgroups: 114 in 56 conjugacy classes, 30 normal (all characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C12, C2xC6, C22:C4, D8, SD16, C2xC12, C3xD4, D4:C4, C3xC22:C4, C3xD8, C3xSD16, D8.C4, C3xD4:C4, C3xD8.C4
2C2
8C2
4C4
4C22
2C6
8C6
2D4
2Q8
4D4
4C2xC4
4C8
4C2xC6
4C12
2M4(2)
2C4oD4
2C16
2SD16
2C3xD4
2C3xQ8
4C2xC12
4C24
4C3xD4
2C3xC4oD4
2C48
2C3xM4(2)
2C3xSD16

Smallest permutation representation of C3xD8.C4
On 96 points
Generators in S96
(1 44 28)(2 45 29)(3 46 30)(4 47 31)(5 48 32)(6 41 25)(7 42 26)(8 43 27)(9 84 68)(10 85 69)(11 86 70)(12 87 71)(13 88 72)(14 81 65)(15 82 66)(16 83 67)(17 55 33)(18 56 34)(19 49 35)(20 50 36)(21 51 37)(22 52 38)(23 53 39)(24 54 40)(57 89 73)(58 90 74)(59 91 75)(60 92 76)(61 93 77)(62 94 78)(63 95 79)(64 96 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 8)(2 7)(3 6)(4 5)(9 13)(10 12)(14 16)(17 20)(18 19)(21 24)(22 23)(25 30)(26 29)(27 28)(31 32)(33 36)(34 35)(37 40)(38 39)(41 46)(42 45)(43 44)(47 48)(49 56)(50 55)(51 54)(52 53)(57 61)(58 60)(62 64)(65 67)(68 72)(69 71)(73 77)(74 76)(78 80)(81 83)(84 88)(85 87)(89 93)(90 92)(94 96)
(1 71 23 64 5 67 19 60)(2 70 24 63 6 66 20 59)(3 69 17 62 7 65 21 58)(4 68 18 61 8 72 22 57)(9 56 93 43 13 52 89 47)(10 55 94 42 14 51 90 46)(11 54 95 41 15 50 91 45)(12 53 96 48 16 49 92 44)(25 82 36 75 29 86 40 79)(26 81 37 74 30 85 33 78)(27 88 38 73 31 84 34 77)(28 87 39 80 32 83 35 76)

G:=sub<Sym(96)| (1,44,28)(2,45,29)(3,46,30)(4,47,31)(5,48,32)(6,41,25)(7,42,26)(8,43,27)(9,84,68)(10,85,69)(11,86,70)(12,87,71)(13,88,72)(14,81,65)(15,82,66)(16,83,67)(17,55,33)(18,56,34)(19,49,35)(20,50,36)(21,51,37)(22,52,38)(23,53,39)(24,54,40)(57,89,73)(58,90,74)(59,91,75)(60,92,76)(61,93,77)(62,94,78)(63,95,79)(64,96,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,61)(58,60)(62,64)(65,67)(68,72)(69,71)(73,77)(74,76)(78,80)(81,83)(84,88)(85,87)(89,93)(90,92)(94,96), (1,71,23,64,5,67,19,60)(2,70,24,63,6,66,20,59)(3,69,17,62,7,65,21,58)(4,68,18,61,8,72,22,57)(9,56,93,43,13,52,89,47)(10,55,94,42,14,51,90,46)(11,54,95,41,15,50,91,45)(12,53,96,48,16,49,92,44)(25,82,36,75,29,86,40,79)(26,81,37,74,30,85,33,78)(27,88,38,73,31,84,34,77)(28,87,39,80,32,83,35,76)>;

G:=Group( (1,44,28)(2,45,29)(3,46,30)(4,47,31)(5,48,32)(6,41,25)(7,42,26)(8,43,27)(9,84,68)(10,85,69)(11,86,70)(12,87,71)(13,88,72)(14,81,65)(15,82,66)(16,83,67)(17,55,33)(18,56,34)(19,49,35)(20,50,36)(21,51,37)(22,52,38)(23,53,39)(24,54,40)(57,89,73)(58,90,74)(59,91,75)(60,92,76)(61,93,77)(62,94,78)(63,95,79)(64,96,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,30)(26,29)(27,28)(31,32)(33,36)(34,35)(37,40)(38,39)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,61)(58,60)(62,64)(65,67)(68,72)(69,71)(73,77)(74,76)(78,80)(81,83)(84,88)(85,87)(89,93)(90,92)(94,96), (1,71,23,64,5,67,19,60)(2,70,24,63,6,66,20,59)(3,69,17,62,7,65,21,58)(4,68,18,61,8,72,22,57)(9,56,93,43,13,52,89,47)(10,55,94,42,14,51,90,46)(11,54,95,41,15,50,91,45)(12,53,96,48,16,49,92,44)(25,82,36,75,29,86,40,79)(26,81,37,74,30,85,33,78)(27,88,38,73,31,84,34,77)(28,87,39,80,32,83,35,76) );

G=PermutationGroup([[(1,44,28),(2,45,29),(3,46,30),(4,47,31),(5,48,32),(6,41,25),(7,42,26),(8,43,27),(9,84,68),(10,85,69),(11,86,70),(12,87,71),(13,88,72),(14,81,65),(15,82,66),(16,83,67),(17,55,33),(18,56,34),(19,49,35),(20,50,36),(21,51,37),(22,52,38),(23,53,39),(24,54,40),(57,89,73),(58,90,74),(59,91,75),(60,92,76),(61,93,77),(62,94,78),(63,95,79),(64,96,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,8),(2,7),(3,6),(4,5),(9,13),(10,12),(14,16),(17,20),(18,19),(21,24),(22,23),(25,30),(26,29),(27,28),(31,32),(33,36),(34,35),(37,40),(38,39),(41,46),(42,45),(43,44),(47,48),(49,56),(50,55),(51,54),(52,53),(57,61),(58,60),(62,64),(65,67),(68,72),(69,71),(73,77),(74,76),(78,80),(81,83),(84,88),(85,87),(89,93),(90,92),(94,96)], [(1,71,23,64,5,67,19,60),(2,70,24,63,6,66,20,59),(3,69,17,62,7,65,21,58),(4,68,18,61,8,72,22,57),(9,56,93,43,13,52,89,47),(10,55,94,42,14,51,90,46),(11,54,95,41,15,50,91,45),(12,53,96,48,16,49,92,44),(25,82,36,75,29,86,40,79),(26,81,37,74,30,85,33,78),(27,88,38,73,31,84,34,77),(28,87,39,80,32,83,35,76)]])

66 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F8A8B8C8D8E8F12A12B12C12D12E12F12G12H16A···16H24A···24H24I24J24K24L48A···48P
order1222334444666666888888121212121212121216···1624···242424242448···48
size1128111128112288222288111122882···22···288882···2

66 irreducible representations

dim1111111111112222222222
type+++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4D8SD16C3xD4C3xD4C3xD8C3xSD16D8.C4C3xD8.C4
kernelC3xD8.C4C3xC8.C4C2xC48C3xC4oD8D8.C4C3xD8C3xQ16C8.C4C2xC16C4oD8D8Q16C24C2xC12C12C2xC6C8C2xC4C4C22C3C1
# reps11112222224411222244816

Matrix representation of C3xD8.C4 in GL2(F97) generated by

610
061
,
790
77
,
77
790
,
3994
9458
G:=sub<GL(2,GF(97))| [61,0,0,61],[7,7,90,7],[7,7,7,90],[39,94,94,58] >;

C3xD8.C4 in GAP, Magma, Sage, TeX

C_3\times D_8.C_4
% in TeX

G:=Group("C3xD8.C4");
// GroupNames label

G:=SmallGroup(192,165);
// by ID

G=gap.SmallGroup(192,165);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,850,360,172,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^2=1,d^4=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=d*b*d^-1=b^-1,d*c*d^-1=b^5*c>;
// generators/relations

Export

Subgroup lattice of C3xD8.C4 in TeX

׿
x
:
Z
F
o
wr
Q
<