# Extensions 1→N→G→Q→1 with N=C22 and Q=C3×D8

Direct product G=N×Q with N=C22 and Q=C3×D8
dρLabelID
C2×C6×D896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C22 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×D8) = A4×D8φ: C3×D8/D8C3 ⊆ Aut C22246+C2^2:(C3xD8)192,1014
C222(C3×D8) = C3×C87D4φ: C3×D8/C24C2 ⊆ Aut C2296C2^2:2(C3xD8)192,899
C223(C3×D8) = C3×C22⋊D8φ: C3×D8/C3×D4C2 ⊆ Aut C2248C2^2:3(C3xD8)192,880

Non-split extensions G=N.Q with N=C22 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C22.1(C3×D8) = C3×C4○D16φ: C3×D8/C24C2 ⊆ Aut C22962C2^2.1(C3xD8)192,941
C22.2(C3×D8) = C3×C22.SD16φ: C3×D8/C3×D4C2 ⊆ Aut C2248C2^2.2(C3xD8)192,133
C22.3(C3×D8) = C3×D82C4φ: C3×D8/C3×D4C2 ⊆ Aut C22484C2^2.3(C3xD8)192,166
C22.4(C3×D8) = C3×C22.D8φ: C3×D8/C3×D4C2 ⊆ Aut C2296C2^2.4(C3xD8)192,913
C22.5(C3×D8) = C3×C16⋊C22φ: C3×D8/C3×D4C2 ⊆ Aut C22484C2^2.5(C3xD8)192,942
C22.6(C3×D8) = C3×Q32⋊C2φ: C3×D8/C3×D4C2 ⊆ Aut C22964C2^2.6(C3xD8)192,943
C22.7(C3×D8) = C3×C22.4Q16central extension (φ=1)192C2^2.7(C3xD8)192,146
C22.8(C3×D8) = C3×C2.D16central extension (φ=1)96C2^2.8(C3xD8)192,163
C22.9(C3×D8) = C3×C2.Q32central extension (φ=1)192C2^2.9(C3xD8)192,164
C22.10(C3×D8) = C3×C163C4central extension (φ=1)192C2^2.10(C3xD8)192,172
C22.11(C3×D8) = C3×C164C4central extension (φ=1)192C2^2.11(C3xD8)192,173
C22.12(C3×D8) = C6×D4⋊C4central extension (φ=1)96C2^2.12(C3xD8)192,847
C22.13(C3×D8) = C6×C2.D8central extension (φ=1)192C2^2.13(C3xD8)192,859
C22.14(C3×D8) = C6×D16central extension (φ=1)96C2^2.14(C3xD8)192,938
C22.15(C3×D8) = C6×SD32central extension (φ=1)96C2^2.15(C3xD8)192,939
C22.16(C3×D8) = C6×Q32central extension (φ=1)192C2^2.16(C3xD8)192,940

׿
×
𝔽