Copied to
clipboard

G = C3×C2.Q32order 192 = 26·3

Direct product of C3 and C2.Q32

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C2.Q32, C6.6Q32, Q161C12, C24.89D4, C6.10SD32, C12.31SD16, C8.8(C2×C12), (C2×C48).3C2, (C2×C16).1C6, (C3×Q16)⋊7C4, (C2×C6).50D8, C8.15(C3×D4), C2.1(C3×Q32), C2.D8.1C6, C24.54(C2×C4), (C2×Q16).1C6, (C6×Q16).7C2, C2.2(C3×SD32), C4.2(C3×SD16), C22.9(C3×D8), (C2×C12).406D4, C6.38(D4⋊C4), C12.70(C22⋊C4), (C2×C24).395C22, (C2×C8).72(C2×C6), (C2×C4).60(C3×D4), C4.2(C3×C22⋊C4), (C3×C2.D8).8C2, C2.7(C3×D4⋊C4), SmallGroup(192,164)

Series: Derived Chief Lower central Upper central

C1C8 — C3×C2.Q32
C1C2C4C2×C4C2×C8C2×C24C3×C2.D8 — C3×C2.Q32
C1C2C4C8 — C3×C2.Q32
C1C2×C6C2×C12C2×C24 — C3×C2.Q32

Generators and relations for C3×C2.Q32
 G = < a,b,c,d | a3=b2=c16=1, d2=c8, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=bc-1 >

Subgroups: 114 in 58 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C2×C4, C2×C4, Q8, C12, C12, C2×C6, C16, C4⋊C4, C2×C8, Q16, Q16, C2×Q8, C24, C2×C12, C2×C12, C3×Q8, C2.D8, C2×C16, C2×Q16, C48, C3×C4⋊C4, C2×C24, C3×Q16, C3×Q16, C6×Q8, C2.Q32, C3×C2.D8, C2×C48, C6×Q16, C3×C2.Q32
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, C2×C12, C3×D4, D4⋊C4, SD32, Q32, C3×C22⋊C4, C3×D8, C3×SD16, C2.Q32, C3×D4⋊C4, C3×SD32, C3×Q32, C3×C2.Q32

Smallest permutation representation of C3×C2.Q32
Regular action on 192 points
Generators in S192
(1 96 113)(2 81 114)(3 82 115)(4 83 116)(5 84 117)(6 85 118)(7 86 119)(8 87 120)(9 88 121)(10 89 122)(11 90 123)(12 91 124)(13 92 125)(14 93 126)(15 94 127)(16 95 128)(17 147 177)(18 148 178)(19 149 179)(20 150 180)(21 151 181)(22 152 182)(23 153 183)(24 154 184)(25 155 185)(26 156 186)(27 157 187)(28 158 188)(29 159 189)(30 160 190)(31 145 191)(32 146 192)(33 59 170)(34 60 171)(35 61 172)(36 62 173)(37 63 174)(38 64 175)(39 49 176)(40 50 161)(41 51 162)(42 52 163)(43 53 164)(44 54 165)(45 55 166)(46 56 167)(47 57 168)(48 58 169)(65 102 129)(66 103 130)(67 104 131)(68 105 132)(69 106 133)(70 107 134)(71 108 135)(72 109 136)(73 110 137)(74 111 138)(75 112 139)(76 97 140)(77 98 141)(78 99 142)(79 100 143)(80 101 144)
(1 159)(2 160)(3 145)(4 146)(5 147)(6 148)(7 149)(8 150)(9 151)(10 152)(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 117)(18 118)(19 119)(20 120)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 113)(30 114)(31 115)(32 116)(33 78)(34 79)(35 80)(36 65)(37 66)(38 67)(39 68)(40 69)(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(81 190)(82 191)(83 192)(84 177)(85 178)(86 179)(87 180)(88 181)(89 182)(90 183)(91 184)(92 185)(93 186)(94 187)(95 188)(96 189)(129 173)(130 174)(131 175)(132 176)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(141 169)(142 170)(143 171)(144 172)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 59 9 51)(2 98 10 106)(3 57 11 49)(4 112 12 104)(5 55 13 63)(6 110 14 102)(7 53 15 61)(8 108 16 100)(17 74 25 66)(18 44 26 36)(19 72 27 80)(20 42 28 34)(21 70 29 78)(22 40 30 48)(23 68 31 76)(24 38 32 46)(33 121 41 113)(35 119 43 127)(37 117 45 125)(39 115 47 123)(50 160 58 152)(52 158 60 150)(54 156 62 148)(56 154 64 146)(65 118 73 126)(67 116 75 124)(69 114 77 122)(71 128 79 120)(81 141 89 133)(82 168 90 176)(83 139 91 131)(84 166 92 174)(85 137 93 129)(86 164 94 172)(87 135 95 143)(88 162 96 170)(97 153 105 145)(99 151 107 159)(101 149 109 157)(103 147 111 155)(130 177 138 185)(132 191 140 183)(134 189 142 181)(136 187 144 179)(161 190 169 182)(163 188 171 180)(165 186 173 178)(167 184 175 192)

G:=sub<Sym(192)| (1,96,113)(2,81,114)(3,82,115)(4,83,116)(5,84,117)(6,85,118)(7,86,119)(8,87,120)(9,88,121)(10,89,122)(11,90,123)(12,91,124)(13,92,125)(14,93,126)(15,94,127)(16,95,128)(17,147,177)(18,148,178)(19,149,179)(20,150,180)(21,151,181)(22,152,182)(23,153,183)(24,154,184)(25,155,185)(26,156,186)(27,157,187)(28,158,188)(29,159,189)(30,160,190)(31,145,191)(32,146,192)(33,59,170)(34,60,171)(35,61,172)(36,62,173)(37,63,174)(38,64,175)(39,49,176)(40,50,161)(41,51,162)(42,52,163)(43,53,164)(44,54,165)(45,55,166)(46,56,167)(47,57,168)(48,58,169)(65,102,129)(66,103,130)(67,104,131)(68,105,132)(69,106,133)(70,107,134)(71,108,135)(72,109,136)(73,110,137)(74,111,138)(75,112,139)(76,97,140)(77,98,141)(78,99,142)(79,100,143)(80,101,144), (1,159)(2,160)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,113)(30,114)(31,115)(32,116)(33,78)(34,79)(35,80)(36,65)(37,66)(38,67)(39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(81,190)(82,191)(83,192)(84,177)(85,178)(86,179)(87,180)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(129,173)(130,174)(131,175)(132,176)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(141,169)(142,170)(143,171)(144,172), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,59,9,51)(2,98,10,106)(3,57,11,49)(4,112,12,104)(5,55,13,63)(6,110,14,102)(7,53,15,61)(8,108,16,100)(17,74,25,66)(18,44,26,36)(19,72,27,80)(20,42,28,34)(21,70,29,78)(22,40,30,48)(23,68,31,76)(24,38,32,46)(33,121,41,113)(35,119,43,127)(37,117,45,125)(39,115,47,123)(50,160,58,152)(52,158,60,150)(54,156,62,148)(56,154,64,146)(65,118,73,126)(67,116,75,124)(69,114,77,122)(71,128,79,120)(81,141,89,133)(82,168,90,176)(83,139,91,131)(84,166,92,174)(85,137,93,129)(86,164,94,172)(87,135,95,143)(88,162,96,170)(97,153,105,145)(99,151,107,159)(101,149,109,157)(103,147,111,155)(130,177,138,185)(132,191,140,183)(134,189,142,181)(136,187,144,179)(161,190,169,182)(163,188,171,180)(165,186,173,178)(167,184,175,192)>;

G:=Group( (1,96,113)(2,81,114)(3,82,115)(4,83,116)(5,84,117)(6,85,118)(7,86,119)(8,87,120)(9,88,121)(10,89,122)(11,90,123)(12,91,124)(13,92,125)(14,93,126)(15,94,127)(16,95,128)(17,147,177)(18,148,178)(19,149,179)(20,150,180)(21,151,181)(22,152,182)(23,153,183)(24,154,184)(25,155,185)(26,156,186)(27,157,187)(28,158,188)(29,159,189)(30,160,190)(31,145,191)(32,146,192)(33,59,170)(34,60,171)(35,61,172)(36,62,173)(37,63,174)(38,64,175)(39,49,176)(40,50,161)(41,51,162)(42,52,163)(43,53,164)(44,54,165)(45,55,166)(46,56,167)(47,57,168)(48,58,169)(65,102,129)(66,103,130)(67,104,131)(68,105,132)(69,106,133)(70,107,134)(71,108,135)(72,109,136)(73,110,137)(74,111,138)(75,112,139)(76,97,140)(77,98,141)(78,99,142)(79,100,143)(80,101,144), (1,159)(2,160)(3,145)(4,146)(5,147)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,117)(18,118)(19,119)(20,120)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,113)(30,114)(31,115)(32,116)(33,78)(34,79)(35,80)(36,65)(37,66)(38,67)(39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(81,190)(82,191)(83,192)(84,177)(85,178)(86,179)(87,180)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(129,173)(130,174)(131,175)(132,176)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(141,169)(142,170)(143,171)(144,172), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,59,9,51)(2,98,10,106)(3,57,11,49)(4,112,12,104)(5,55,13,63)(6,110,14,102)(7,53,15,61)(8,108,16,100)(17,74,25,66)(18,44,26,36)(19,72,27,80)(20,42,28,34)(21,70,29,78)(22,40,30,48)(23,68,31,76)(24,38,32,46)(33,121,41,113)(35,119,43,127)(37,117,45,125)(39,115,47,123)(50,160,58,152)(52,158,60,150)(54,156,62,148)(56,154,64,146)(65,118,73,126)(67,116,75,124)(69,114,77,122)(71,128,79,120)(81,141,89,133)(82,168,90,176)(83,139,91,131)(84,166,92,174)(85,137,93,129)(86,164,94,172)(87,135,95,143)(88,162,96,170)(97,153,105,145)(99,151,107,159)(101,149,109,157)(103,147,111,155)(130,177,138,185)(132,191,140,183)(134,189,142,181)(136,187,144,179)(161,190,169,182)(163,188,171,180)(165,186,173,178)(167,184,175,192) );

G=PermutationGroup([[(1,96,113),(2,81,114),(3,82,115),(4,83,116),(5,84,117),(6,85,118),(7,86,119),(8,87,120),(9,88,121),(10,89,122),(11,90,123),(12,91,124),(13,92,125),(14,93,126),(15,94,127),(16,95,128),(17,147,177),(18,148,178),(19,149,179),(20,150,180),(21,151,181),(22,152,182),(23,153,183),(24,154,184),(25,155,185),(26,156,186),(27,157,187),(28,158,188),(29,159,189),(30,160,190),(31,145,191),(32,146,192),(33,59,170),(34,60,171),(35,61,172),(36,62,173),(37,63,174),(38,64,175),(39,49,176),(40,50,161),(41,51,162),(42,52,163),(43,53,164),(44,54,165),(45,55,166),(46,56,167),(47,57,168),(48,58,169),(65,102,129),(66,103,130),(67,104,131),(68,105,132),(69,106,133),(70,107,134),(71,108,135),(72,109,136),(73,110,137),(74,111,138),(75,112,139),(76,97,140),(77,98,141),(78,99,142),(79,100,143),(80,101,144)], [(1,159),(2,160),(3,145),(4,146),(5,147),(6,148),(7,149),(8,150),(9,151),(10,152),(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,117),(18,118),(19,119),(20,120),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,113),(30,114),(31,115),(32,116),(33,78),(34,79),(35,80),(36,65),(37,66),(38,67),(39,68),(40,69),(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(81,190),(82,191),(83,192),(84,177),(85,178),(86,179),(87,180),(88,181),(89,182),(90,183),(91,184),(92,185),(93,186),(94,187),(95,188),(96,189),(129,173),(130,174),(131,175),(132,176),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(141,169),(142,170),(143,171),(144,172)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,59,9,51),(2,98,10,106),(3,57,11,49),(4,112,12,104),(5,55,13,63),(6,110,14,102),(7,53,15,61),(8,108,16,100),(17,74,25,66),(18,44,26,36),(19,72,27,80),(20,42,28,34),(21,70,29,78),(22,40,30,48),(23,68,31,76),(24,38,32,46),(33,121,41,113),(35,119,43,127),(37,117,45,125),(39,115,47,123),(50,160,58,152),(52,158,60,150),(54,156,62,148),(56,154,64,146),(65,118,73,126),(67,116,75,124),(69,114,77,122),(71,128,79,120),(81,141,89,133),(82,168,90,176),(83,139,91,131),(84,166,92,174),(85,137,93,129),(86,164,94,172),(87,135,95,143),(88,162,96,170),(97,153,105,145),(99,151,107,159),(101,149,109,157),(103,147,111,155),(130,177,138,185),(132,191,140,183),(134,189,142,181),(136,187,144,179),(161,190,169,182),(163,188,171,180),(165,186,173,178),(167,184,175,192)]])

66 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F6A···6F8A8B8C8D12A12B12C12D12E···12L16A···16H24A···24H48A···48P
order1222334444446···688881212121212···1216···1624···2448···48
size1111112288881···1222222228···82···22···22···2

66 irreducible representations

dim1111111111222222222222
type+++++++-
imageC1C2C2C2C3C4C6C6C6C12D4D4SD16D8C3×D4C3×D4SD32Q32C3×SD16C3×D8C3×SD32C3×Q32
kernelC3×C2.Q32C3×C2.D8C2×C48C6×Q16C2.Q32C3×Q16C2.D8C2×C16C2×Q16Q16C24C2×C12C12C2×C6C8C2×C4C6C6C4C22C2C2
# reps1111242228112222444488

Matrix representation of C3×C2.Q32 in GL4(𝔽97) generated by

1000
0100
00610
00061
,
96000
09600
0010
0001
,
225300
227500
00712
009571
,
19500
09600
00117
001796
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,61,0,0,0,0,61],[96,0,0,0,0,96,0,0,0,0,1,0,0,0,0,1],[22,22,0,0,53,75,0,0,0,0,71,95,0,0,2,71],[1,0,0,0,95,96,0,0,0,0,1,17,0,0,17,96] >;

C3×C2.Q32 in GAP, Magma, Sage, TeX

C_3\times C_2.Q_{32}
% in TeX

G:=Group("C3xC2.Q32");
// GroupNames label

G:=SmallGroup(192,164);
// by ID

G=gap.SmallGroup(192,164);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,680,1683,850,360,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^16=1,d^2=c^8,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽