Copied to
clipboard

G = C3×D82C4order 192 = 26·3

Direct product of C3 and D82C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×D82C4, D82C12, Q162C12, C24.102D4, M5(2)⋊5C6, C12.43SD16, (C3×D8)⋊8C4, C4.Q81C6, C8.1(C2×C12), (C3×Q16)⋊8C4, C4○D8.2C6, (C2×C6).25D8, C8.22(C3×D4), C24.36(C2×C4), C4.8(C3×SD16), C22.3(C3×D8), (C2×C12).279D4, (C3×M5(2))⋊13C2, C6.40(D4⋊C4), C12.72(C22⋊C4), (C2×C24).193C22, (C2×C8).12(C2×C6), (C3×C4○D8).7C2, (C3×C4.Q8)⋊10C2, (C2×C4).10(C3×D4), C4.4(C3×C22⋊C4), C2.9(C3×D4⋊C4), SmallGroup(192,166)

Series: Derived Chief Lower central Upper central

C1C8 — C3×D82C4
C1C2C4C2×C4C2×C8C2×C24C3×C4.Q8 — C3×D82C4
C1C2C4C8 — C3×D82C4
C1C6C2×C12C2×C24 — C3×D82C4

Generators and relations for C3×D82C4
 G = < a,b,c,d | a3=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b5c >

Subgroups: 130 in 58 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C12, C12, C2×C6, C2×C6, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×Q8, C4.Q8, M5(2), C4○D8, C48, C3×C4⋊C4, C2×C24, C3×D8, C3×SD16, C3×Q16, C3×C4○D4, D82C4, C3×C4.Q8, C3×M5(2), C3×C4○D8, C3×D82C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, C2×C12, C3×D4, D4⋊C4, C3×C22⋊C4, C3×D8, C3×SD16, D82C4, C3×D4⋊C4, C3×D82C4

Smallest permutation representation of C3×D82C4
On 48 points
Generators in S48
(1 23 15)(2 24 16)(3 17 9)(4 18 10)(5 19 11)(6 20 12)(7 21 13)(8 22 14)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 40)(16 39)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 48)(24 47)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 21)(18 24)(20 22)(25 26 29 30)(27 32 31 28)(33 34 37 38)(35 40 39 36)(41 42 45 46)(43 48 47 44)

G:=sub<Sym(48)| (1,23,15)(2,24,16)(3,17,9)(4,18,10)(5,19,11)(6,20,12)(7,21,13)(8,22,14)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,48)(24,47), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,26,29,30)(27,32,31,28)(33,34,37,38)(35,40,39,36)(41,42,45,46)(43,48,47,44)>;

G:=Group( (1,23,15)(2,24,16)(3,17,9)(4,18,10)(5,19,11)(6,20,12)(7,21,13)(8,22,14)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,48)(24,47), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,26,29,30)(27,32,31,28)(33,34,37,38)(35,40,39,36)(41,42,45,46)(43,48,47,44) );

G=PermutationGroup([[(1,23,15),(2,24,16),(3,17,9),(4,18,10),(5,19,11),(6,20,12),(7,21,13),(8,22,14),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,40),(16,39),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,48),(24,47)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,21),(18,24),(20,22),(25,26,29,30),(27,32,31,28),(33,34,37,38),(35,40,39,36),(41,42,45,46),(43,48,47,44)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E6A6B6C6D6E6F8A8B8C12A12B12C12D12E···12J16A16B16C16D24A24B24C24D24E24F48A···48H
order122233444446666668881212121212···121616161624242424242448···48
size1128112288811228822422228···844442222444···4

48 irreducible representations

dim1111111111112222222244
type+++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4SD16D8C3×D4C3×D4C3×SD16C3×D8D82C4C3×D82C4
kernelC3×D82C4C3×C4.Q8C3×M5(2)C3×C4○D8D82C4C3×D8C3×Q16C4.Q8M5(2)C4○D8D8Q16C24C2×C12C12C2×C6C8C2×C4C4C22C3C1
# reps1111222222441122224424

Matrix representation of C3×D82C4 in GL4(𝔽97) generated by

61000
06100
00610
00061
,
574000
575700
004040
005740
,
004040
005740
574000
575700
,
1000
09600
004057
005757
G:=sub<GL(4,GF(97))| [61,0,0,0,0,61,0,0,0,0,61,0,0,0,0,61],[57,57,0,0,40,57,0,0,0,0,40,57,0,0,40,40],[0,0,57,57,0,0,40,57,40,57,0,0,40,40,0,0],[1,0,0,0,0,96,0,0,0,0,40,57,0,0,57,57] >;

C3×D82C4 in GAP, Magma, Sage, TeX

C_3\times D_8\rtimes_2C_4
% in TeX

G:=Group("C3xD8:2C4");
// GroupNames label

G:=SmallGroup(192,166);
// by ID

G=gap.SmallGroup(192,166);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,2194,136,2111,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^5*c>;
// generators/relations

׿
×
𝔽