Extensions 1→N→G→Q→1 with N=S3xD4 and Q=C4

Direct product G=NxQ with N=S3xD4 and Q=C4
dρLabelID
C4xS3xD448C4xS3xD4192,1103

Semidirect products G=N:Q with N=S3xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3xD4):1C4 = S3xD4:C4φ: C4/C2C2 ⊆ Out S3xD448(S3xD4):1C4192,328
(S3xD4):2C4 = C4:C4:19D6φ: C4/C2C2 ⊆ Out S3xD448(S3xD4):2C4192,329
(S3xD4):3C4 = S3xC4wrC2φ: C4/C2C2 ⊆ Out S3xD4244(S3xD4):3C4192,379
(S3xD4):4C4 = C42:3D6φ: C4/C2C2 ⊆ Out S3xD4484(S3xD4):4C4192,380
(S3xD4):5C4 = C42:13D6φ: C4/C2C2 ⊆ Out S3xD448(S3xD4):5C4192,1104

Non-split extensions G=N.Q with N=S3xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3xD4).C4 = M4(2):28D6φ: C4/C2C2 ⊆ Out S3xD4484(S3xD4).C4192,1309
(S3xD4).2C4 = S3xC8oD4φ: trivial image484(S3xD4).2C4192,1308

׿
x
:
Z
F
o
wr
Q
<