Copied to
clipboard

G = C4:C4:19D6order 192 = 26·3

2nd semidirect product of C4:C4 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4:19D6, (S3xD4):2C4, (C2xC8):19D6, (C4xS3).3D4, D4.9(C4xS3), D12.1(C2xC4), C6.D8:5C2, C4.155(S3xD4), D4:C4:16S3, (C2xC24):28C22, (C2xD4).131D6, D4:Dic3:4C2, C2.D24:23C2, C12.104(C2xD4), C2.2(D8:S3), C2.1(Q8:3D6), C12.5(C22xC4), C22.69(S3xD4), C6.29(C8:C22), C4:Dic3:18C22, (C6xD4).31C22, (C22xS3).68D4, (C2xC12).210C23, D6.11(C22:C4), (C2xDic3).139D4, (C2xD12).48C22, C3:1(C23.37D4), Dic3.7(C22:C4), C4.5(S3xC2xC4), (C2xS3xD4).4C2, (C2xC3:C8):1C22, C4:C4:7S3:1C2, (C3xC4:C4):2C22, (C4xS3).1(C2xC4), (C3xD4).3(C2xC4), (C2xC8:S3):15C2, (S3xC2xC4).5C22, (C2xC6).223(C2xD4), C2.18(S3xC22:C4), C6.17(C2xC22:C4), (C3xD4:C4):24C2, (C2xC4).317(C22xS3), SmallGroup(192,329)

Series: Derived Chief Lower central Upper central

C1C12 — C4:C4:19D6
C1C3C6C2xC6C2xC12S3xC2xC4C2xS3xD4 — C4:C4:19D6
C3C6C12 — C4:C4:19D6
C1C22C2xC4D4:C4

Generators and relations for C4:C4:19D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=cac-1=dad=a-1, cbc-1=a-1b-1, dbd=ab-1, dcd=c-1 >

Subgroups: 680 in 190 conjugacy classes, 55 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C2xD4, C2xD4, C24, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C22xS3, C22xS3, C22xC6, D4:C4, D4:C4, C42:C2, C2xM4(2), C22xD4, C8:S3, C2xC3:C8, C4xDic3, C4:Dic3, D6:C4, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, S3xD4, S3xD4, C2xC3:D4, C6xD4, S3xC23, C23.37D4, C6.D8, C2.D24, D4:Dic3, C3xD4:C4, C4:C4:7S3, C2xC8:S3, C2xS3xD4, C4:C4:19D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C2xC22:C4, C8:C22, S3xC2xC4, S3xD4, C23.37D4, S3xC22:C4, D8:S3, Q8:3D6, C4:C4:19D6

Smallest permutation representation of C4:C4:19D6
On 48 points
Generators in S48
(1 32 19 8)(2 9 20 33)(3 34 21 10)(4 11 22 35)(5 36 23 12)(6 7 24 31)(13 16 40 37)(14 38 41 17)(15 18 42 39)(25 28 46 43)(26 44 47 29)(27 30 48 45)
(1 25 4 42)(2 40 5 29)(3 27 6 38)(7 14 34 45)(8 28 35 39)(9 16 36 47)(10 30 31 41)(11 18 32 43)(12 26 33 37)(13 23 44 20)(15 19 46 22)(17 21 48 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 8)(9 12)(10 11)(13 37)(14 42)(15 41)(16 40)(17 39)(18 38)(19 24)(20 23)(21 22)(25 45)(26 44)(27 43)(28 48)(29 47)(30 46)(31 32)(33 36)(34 35)

G:=sub<Sym(48)| (1,32,19,8)(2,9,20,33)(3,34,21,10)(4,11,22,35)(5,36,23,12)(6,7,24,31)(13,16,40,37)(14,38,41,17)(15,18,42,39)(25,28,46,43)(26,44,47,29)(27,30,48,45), (1,25,4,42)(2,40,5,29)(3,27,6,38)(7,14,34,45)(8,28,35,39)(9,16,36,47)(10,30,31,41)(11,18,32,43)(12,26,33,37)(13,23,44,20)(15,19,46,22)(17,21,48,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,8)(9,12)(10,11)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(19,24)(20,23)(21,22)(25,45)(26,44)(27,43)(28,48)(29,47)(30,46)(31,32)(33,36)(34,35)>;

G:=Group( (1,32,19,8)(2,9,20,33)(3,34,21,10)(4,11,22,35)(5,36,23,12)(6,7,24,31)(13,16,40,37)(14,38,41,17)(15,18,42,39)(25,28,46,43)(26,44,47,29)(27,30,48,45), (1,25,4,42)(2,40,5,29)(3,27,6,38)(7,14,34,45)(8,28,35,39)(9,16,36,47)(10,30,31,41)(11,18,32,43)(12,26,33,37)(13,23,44,20)(15,19,46,22)(17,21,48,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,8)(9,12)(10,11)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(19,24)(20,23)(21,22)(25,45)(26,44)(27,43)(28,48)(29,47)(30,46)(31,32)(33,36)(34,35) );

G=PermutationGroup([[(1,32,19,8),(2,9,20,33),(3,34,21,10),(4,11,22,35),(5,36,23,12),(6,7,24,31),(13,16,40,37),(14,38,41,17),(15,18,42,39),(25,28,46,43),(26,44,47,29),(27,30,48,45)], [(1,25,4,42),(2,40,5,29),(3,27,6,38),(7,14,34,45),(8,28,35,39),(9,16,36,47),(10,30,31,41),(11,18,32,43),(12,26,33,37),(13,23,44,20),(15,19,46,22),(17,21,48,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,8),(9,12),(10,11),(13,37),(14,42),(15,41),(16,40),(17,39),(18,38),(19,24),(20,23),(21,22),(25,45),(26,44),(27,43),(28,48),(29,47),(30,46),(31,32),(33,36),(34,35)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222223444444446666688881212121224242424
size111144661212222446612122228844121244884444

36 irreducible representations

dim1111111112222222244444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D4D4D6D6D6C4xS3C8:C22S3xD4S3xD4D8:S3Q8:3D6
kernelC4:C4:19D6C6.D8C2.D24D4:Dic3C3xD4:C4C4:C4:7S3C2xC8:S3C2xS3xD4S3xD4D4:C4C4xS3C2xDic3C22xS3C4:C4C2xC8C2xD4D4C6C4C22C2C2
# reps1111111181211111421122

Matrix representation of C4:C4:19D6 in GL6(F73)

7200000
0720000
0007200
001000
000001
0000720
,
4600000
0460000
000010
000001
0072000
0007200
,
0720000
1720000
0072000
000100
0000072
0000720
,
1720000
0720000
0072000
000100
000001
000010

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C4:C4:19D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{19}D_6
% in TeX

G:=Group("C4:C4:19D6");
// GroupNames label

G:=SmallGroup(192,329);
// by ID

G=gap.SmallGroup(192,329);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b^-1,d*b*d=a*b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<