# Extensions 1→N→G→Q→1 with N=D12⋊6C22 and Q=C2

Direct product G=N×Q with N=D126C22 and Q=C2
dρLabelID
C2×D126C2248C2xD12:6C2^2192,1352

Semidirect products G=N:Q with N=D126C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D126C221C2 = D12.3D4φ: C2/C1C2 ⊆ Out D126C22488+D12:6C2^2:1C2192,308
D126C222C2 = D12.14D4φ: C2/C1C2 ⊆ Out D126C22484D12:6C2^2:2C2192,621
D126C223C2 = C428D6φ: C2/C1C2 ⊆ Out D126C22244D12:6C2^2:3C2192,636
D126C224C2 = C24.23D4φ: C2/C1C2 ⊆ Out D126C22484D12:6C2^2:4C2192,719
D126C225C2 = D1218D4φ: C2/C1C2 ⊆ Out D126C22248+D12:6C2^2:5C2192,757
D126C226C2 = D12.38D4φ: C2/C1C2 ⊆ Out D126C22488-D12:6C2^2:6C2192,760
D126C227C2 = D813D6φ: C2/C1C2 ⊆ Out D126C22484D12:6C2^2:7C2192,1316
D126C228C2 = SD1613D6φ: C2/C1C2 ⊆ Out D126C22484D12:6C2^2:8C2192,1321
D126C229C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out D126C22248+D12:6C2^2:9C2192,1331
D126C2210C2 = D84D6φ: C2/C1C2 ⊆ Out D126C22488-D12:6C2^2:10C2192,1332
D126C2211C2 = D12.32C23φ: C2/C1C2 ⊆ Out D126C22488+D12:6C2^2:11C2192,1394
D126C2212C2 = D12.33C23φ: C2/C1C2 ⊆ Out D126C22488-D12:6C2^2:12C2192,1395
D126C2213C2 = C12.C24φ: trivial image484D12:6C2^2:13C2192,1381

Non-split extensions G=N.Q with N=D126C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D126C22.1C2 = D12.2D4φ: C2/C1C2 ⊆ Out D126C22488-D12:6C2^2.1C2192,307
D126C22.2C2 = C24.44D4φ: C2/C1C2 ⊆ Out D126C22484D12:6C2^2.2C2192,736

׿
×
𝔽