Copied to
clipboard

G = D12.14D4order 192 = 26·3

14th non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.14D4, C42.66D6, Dic6.14D4, C4.52(S3xD4), (C2xD4).52D6, C12.29(C2xD4), C4.4D4:5S3, (C2xC12).11D4, (C2xQ8).65D6, C6.52C22wrC2, D12:6C22:2C2, C3:3(D4.8D4), C42:4S3:12C2, C12.10D4:5C2, Q8.15D6:2C2, (C6xD4).68C22, (C6xQ8).59C22, C2.20(C23:2D6), (C4xC12).110C22, (C2xC12).380C23, C4oD12.20C22, C4.Dic3.14C22, (C2xC6).511(C2xD4), (C3xC4.4D4):5C2, (C2xC4).10(C3:D4), C22.32(C2xC3:D4), (C2xC4).117(C22xS3), SmallGroup(192,621)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.14D4
C1C3C6C12C2xC12C4oD12Q8.15D6 — D12.14D4
C3C6C2xC12 — D12.14D4
C1C2C2xC4C4.4D4

Generators and relations for D12.14D4
 G = < a,b,c,d | a12=b2=d2=1, c4=a6, bab=cac-1=a-1, dad=a5, cbc-1=a7b, dbd=a10b, dcd=a6c3 >

Subgroups: 432 in 146 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C22:C4, M4(2), D8, SD16, C2xD4, C2xQ8, C2xQ8, C4oD4, C3:C8, Dic6, Dic6, C4xS3, D12, D12, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C3xQ8, C22xC6, C4.10D4, C4wrC2, C4.4D4, C8:C22, 2- 1+4, C4.Dic3, D4:S3, D4.S3, C4xC12, C3xC22:C4, C4oD12, C4oD12, S3xQ8, Q8:3S3, C6xD4, C6xQ8, D4.8D4, C42:4S3, C12.10D4, D12:6C22, C3xC4.4D4, Q8.15D6, D12.14D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, S3xD4, C2xC3:D4, D4.8D4, C23:2D6, D12.14D4

Character table of D12.14D4

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H6A6B6C6D6E8A8B12A12B12C12D12E12F12G12H
 size 112812122224444121222288242444444488
ρ1111111111111111111111111111111    trivial
ρ2111-11-11111-11-11-1111-1-1-11111111-1-1    linear of order 2
ρ3111-111111-11-1111111-1-1-1-1-1-111-1-111    linear of order 2
ρ411111-1111-1-1-1-11-1111111-1-1-111-1-1-1-1    linear of order 2
ρ5111-1-111111-11-1-11111-1-11-1111111-1-1    linear of order 2
ρ61111-1-11111111-1-111111-1-111111111    linear of order 2
ρ71111-11111-1-1-1-1-1111111-11-1-111-1-1-1-1    linear of order 2
ρ8111-1-1-1111-11-11-1-1111-1-111-1-111-1-111    linear of order 2
ρ9222-200-1222-22-200-1-1-11100-1-1-1-1-1-111    orthogonal lifted from D6
ρ1022-20-202-22000020-22-2000000-220000    orthogonal lifted from D4
ρ1122-20202-220000-20-22-2000000-220000    orthogonal lifted from D4
ρ1222-200-222-2000002-22-20000002-20000    orthogonal lifted from D4
ρ13222200-122-2-2-2-200-1-1-1-1-10011-1-11111    orthogonal lifted from D6
ρ1422-200222-200000-2-22-20000002-20000    orthogonal lifted from D4
ρ152220002-2-2020-200222000000-2-2002-2    orthogonal lifted from D4
ρ162220002-2-20-20200222000000-2-200-22    orthogonal lifted from D4
ρ17222200-122222200-1-1-1-1-100-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ18222-200-122-22-2200-1-1-1110011-1-111-1-1    orthogonal lifted from D6
ρ19222000-1-2-2020-200-1-1-1-3--300--3-311--3-3-11    complex lifted from C3:D4
ρ20222000-1-2-20-20200-1-1-1-3--300-3--311-3--31-1    complex lifted from C3:D4
ρ21222000-1-2-2020-200-1-1-1--3-300-3--311-3--3-11    complex lifted from C3:D4
ρ22222000-1-2-20-20200-1-1-1--3-300--3-311--3-31-1    complex lifted from C3:D4
ρ2344-4000-24-40000002-22000000-220000    orthogonal lifted from S3xD4
ρ2444-4000-2-440000002-220000002-20000    orthogonal lifted from S3xD4
ρ254-40000400-2i02i0000-400000-2i-2i002i2i00    complex lifted from D4.8D4
ρ264-400004002i0-2i0000-4000002i2i00-2i-2i00    complex lifted from D4.8D4
ρ274-40000-2002i0-2i0002-32-2-300004ζ324ζ30043ζ3243ζ300    complex faithful
ρ284-40000-200-2i02i000-2-322-3000043ζ343ζ32004ζ34ζ3200    complex faithful
ρ294-40000-200-2i02i0002-32-2-3000043ζ3243ζ3004ζ324ζ300    complex faithful
ρ304-40000-2002i0-2i000-2-322-300004ζ34ζ320043ζ343ζ3200    complex faithful

Smallest permutation representation of D12.14D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 43)(2 42)(3 41)(4 40)(5 39)(6 38)(7 37)(8 48)(9 47)(10 46)(11 45)(12 44)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 36)(22 35)(23 34)(24 33)
(1 30 4 27 7 36 10 33)(2 29 5 26 8 35 11 32)(3 28 6 25 9 34 12 31)(13 47 16 44 19 41 22 38)(14 46 17 43 20 40 23 37)(15 45 18 42 21 39 24 48)
(1 27)(2 32)(3 25)(4 30)(5 35)(6 28)(7 33)(8 26)(9 31)(10 36)(11 29)(12 34)(13 44)(14 37)(15 42)(16 47)(17 40)(18 45)(19 38)(20 43)(21 48)(22 41)(23 46)(24 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,48)(9,47)(10,46)(11,45)(12,44)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,36)(22,35)(23,34)(24,33), (1,30,4,27,7,36,10,33)(2,29,5,26,8,35,11,32)(3,28,6,25,9,34,12,31)(13,47,16,44,19,41,22,38)(14,46,17,43,20,40,23,37)(15,45,18,42,21,39,24,48), (1,27)(2,32)(3,25)(4,30)(5,35)(6,28)(7,33)(8,26)(9,31)(10,36)(11,29)(12,34)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,48)(9,47)(10,46)(11,45)(12,44)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,36)(22,35)(23,34)(24,33), (1,30,4,27,7,36,10,33)(2,29,5,26,8,35,11,32)(3,28,6,25,9,34,12,31)(13,47,16,44,19,41,22,38)(14,46,17,43,20,40,23,37)(15,45,18,42,21,39,24,48), (1,27)(2,32)(3,25)(4,30)(5,35)(6,28)(7,33)(8,26)(9,31)(10,36)(11,29)(12,34)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,43),(2,42),(3,41),(4,40),(5,39),(6,38),(7,37),(8,48),(9,47),(10,46),(11,45),(12,44),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,36),(22,35),(23,34),(24,33)], [(1,30,4,27,7,36,10,33),(2,29,5,26,8,35,11,32),(3,28,6,25,9,34,12,31),(13,47,16,44,19,41,22,38),(14,46,17,43,20,40,23,37),(15,45,18,42,21,39,24,48)], [(1,27),(2,32),(3,25),(4,30),(5,35),(6,28),(7,33),(8,26),(9,31),(10,36),(11,29),(12,34),(13,44),(14,37),(15,42),(16,47),(17,40),(18,45),(19,38),(20,43),(21,48),(22,41),(23,46),(24,39)]])

Matrix representation of D12.14D4 in GL4(F73) generated by

0900
64000
00065
0080
,
00700
0003
24000
04900
,
00072
00720
1000
07200
,
0001
00720
07200
1000
G:=sub<GL(4,GF(73))| [0,64,0,0,9,0,0,0,0,0,0,8,0,0,65,0],[0,0,24,0,0,0,0,49,70,0,0,0,0,3,0,0],[0,0,1,0,0,0,0,72,0,72,0,0,72,0,0,0],[0,0,0,1,0,0,72,0,0,72,0,0,1,0,0,0] >;

D12.14D4 in GAP, Magma, Sage, TeX

D_{12}._{14}D_4
% in TeX

G:=Group("D12.14D4");
// GroupNames label

G:=SmallGroup(192,621);
// by ID

G=gap.SmallGroup(192,621);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,1123,570,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=d^2=1,c^4=a^6,b*a*b=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^7*b,d*b*d=a^10*b,d*c*d=a^6*c^3>;
// generators/relations

Export

Character table of D12.14D4 in TeX

׿
x
:
Z
F
o
wr
Q
<