Copied to
clipboard

G = D12.3D4order 192 = 26·3

3rd non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.3D4, Dic6.3D4, M4(2).2D6, C3⋊C8.25D4, C8⋊D66C2, D12.C46C2, (C2×D4).16D6, C4.D44S3, C4.149(S3×D4), C12.94(C2×D4), D126C221C2, C31(D4.4D4), (C2×C12).6C23, C12.53D42C2, C6.10(C4⋊D4), C4○D12.4C22, (C6×D4).16C22, C12.46D410C2, C2.13(Dic3⋊D4), (C2×D12).39C22, C4.Dic3.3C22, C22.14(C4○D12), (C3×M4(2)).19C22, (C2×D4⋊S3)⋊1C2, (C2×C3⋊C8).2C22, (C3×C4.D4)⋊2C2, (C2×C4).6(C22×S3), (C2×C6).31(C4○D4), SmallGroup(192,308)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D12.3D4
C1C3C6C12C2×C12C4○D12D12.C4 — D12.3D4
C3C6C2×C12 — D12.3D4
C1C2C2×C4C4.D4

Generators and relations for D12.3D4
 G = < a,b,c,d | a12=b2=1, c4=a6, d2=a3, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, dbd-1=a3b, dcd-1=a9c3 >

Subgroups: 368 in 108 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, C3⋊C8, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4.D4, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, S3×C8, C8⋊S3, C24⋊C2, D24, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, C3×M4(2), C2×D12, C4○D12, C6×D4, D4.4D4, C12.53D4, C12.46D4, C3×C4.D4, D12.C4, C8⋊D6, C2×D4⋊S3, D126C22, D12.3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C4○D12, S3×D4, D4.4D4, Dic3⋊D4, D12.3D4

Character table of D12.3D4

 class 12A2B2C2D2E34A4B4C6A6B6C6D8A8B8C8D8E8F8G12A12B24A24B24C24D
 size 11281224222122488446681224448888
ρ1111111111111111111111111111    trivial
ρ211111-111111111-1-1-1-1-1-1111-1-1-1-1    linear of order 2
ρ3111-111111111-1-1-1-1-1-11-1-1111-1-11    linear of order 2
ρ4111-11-1111111-1-11111-11-111-111-1    linear of order 2
ρ5111-1-11111-111-1-111-1-1-1-1111-111-1    linear of order 2
ρ6111-1-1-1111-111-1-1-1-111111111-1-11    linear of order 2
ρ71111-11111-11111-1-111-11-111-1-1-1-1    linear of order 2
ρ81111-1-1111-1111111-1-11-1-1111111    linear of order 2
ρ9222200-1220-1-1-1-12200200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-202022-2-22-20000000002-20000    orthogonal lifted from D4
ρ11222-200-1220-1-111-2-200200-1-1-111-1    orthogonal lifted from D6
ρ12222-200-1220-1-1112200-200-1-11-1-11    orthogonal lifted from D6
ρ1322-20002-2202-20000-2-2020-220000    orthogonal lifted from D4
ρ14222200-1220-1-1-1-1-2-200-200-1-11111    orthogonal lifted from D6
ρ1522-20-2022-222-20000000002-20000    orthogonal lifted from D4
ρ1622-20002-2202-20000220-20-220000    orthogonal lifted from D4
ρ172220002-2-2022002i-2i00000-2-202i-2i0    complex lifted from C4○D4
ρ182220002-2-202200-2i2i00000-2-20-2i2i0    complex lifted from C4○D4
ρ19222000-1-2-20-1-1-3--32i-2i0000011-3-ii3    complex lifted from C4○D12
ρ20222000-1-2-20-1-1--3-32i-2i00000113-ii-3    complex lifted from C4○D12
ρ21222000-1-2-20-1-1--3-3-2i2i0000011-3i-i3    complex lifted from C4○D12
ρ22222000-1-2-20-1-1-3--3-2i2i00000113i-i-3    complex lifted from C4○D12
ρ2344-4000-24-40-22000000000-220000    orthogonal lifted from S3×D4
ρ2444-4000-2-440-220000000002-20000    orthogonal lifted from S3×D4
ρ254-400004000-40000022-22000000000    orthogonal lifted from D4.4D4
ρ264-400004000-400000-2222000000000    orthogonal lifted from D4.4D4
ρ278-80000-400040000000000000000    orthogonal faithful, Schur index 2

Smallest permutation representation of D12.3D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 48)(8 47)(9 46)(10 45)(11 44)(12 43)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)
(1 34 10 25 7 28 4 31)(2 29 11 32 8 35 5 26)(3 36 12 27 9 30 6 33)(13 37 22 40 19 43 16 46)(14 44 23 47 20 38 17 41)(15 39 24 42 21 45 18 48)
(1 46 4 37 7 40 10 43)(2 47 5 38 8 41 11 44)(3 48 6 39 9 42 12 45)(13 31 16 34 19 25 22 28)(14 32 17 35 20 26 23 29)(15 33 18 36 21 27 24 30)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,34,10,25,7,28,4,31)(2,29,11,32,8,35,5,26)(3,36,12,27,9,30,6,33)(13,37,22,40,19,43,16,46)(14,44,23,47,20,38,17,41)(15,39,24,42,21,45,18,48), (1,46,4,37,7,40,10,43)(2,47,5,38,8,41,11,44)(3,48,6,39,9,42,12,45)(13,31,16,34,19,25,22,28)(14,32,17,35,20,26,23,29)(15,33,18,36,21,27,24,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,34,10,25,7,28,4,31)(2,29,11,32,8,35,5,26)(3,36,12,27,9,30,6,33)(13,37,22,40,19,43,16,46)(14,44,23,47,20,38,17,41)(15,39,24,42,21,45,18,48), (1,46,4,37,7,40,10,43)(2,47,5,38,8,41,11,44)(3,48,6,39,9,42,12,45)(13,31,16,34,19,25,22,28)(14,32,17,35,20,26,23,29)(15,33,18,36,21,27,24,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,48),(8,47),(9,46),(10,45),(11,44),(12,43),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25)], [(1,34,10,25,7,28,4,31),(2,29,11,32,8,35,5,26),(3,36,12,27,9,30,6,33),(13,37,22,40,19,43,16,46),(14,44,23,47,20,38,17,41),(15,39,24,42,21,45,18,48)], [(1,46,4,37,7,40,10,43),(2,47,5,38,8,41,11,44),(3,48,6,39,9,42,12,45),(13,31,16,34,19,25,22,28),(14,32,17,35,20,26,23,29),(15,33,18,36,21,27,24,30)]])

Matrix representation of D12.3D4 in GL6(𝔽73)

0720000
1720000
001200
00727200
006565723
00460481
,
7210000
010000
006107041
0060380
0048251255
00574100
,
7200000
0720000
00460480
000001
007070270
00727200
,
7200000
0720000
00120332
006703541
0025486118
0057000

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,72,65,46,0,0,2,72,65,0,0,0,0,0,72,48,0,0,0,0,3,1],[72,0,0,0,0,0,1,1,0,0,0,0,0,0,61,6,48,57,0,0,0,0,25,41,0,0,70,38,12,0,0,0,41,0,55,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,70,72,0,0,0,0,70,72,0,0,48,0,27,0,0,0,0,1,0,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,12,67,25,57,0,0,0,0,48,0,0,0,3,35,61,0,0,0,32,41,18,0] >;

D12.3D4 in GAP, Magma, Sage, TeX

D_{12}._3D_4
% in TeX

G:=Group("D12.3D4");
// GroupNames label

G:=SmallGroup(192,308);
// by ID

G=gap.SmallGroup(192,308);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,297,136,1684,851,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^3,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^3>;
// generators/relations

Export

Character table of D12.3D4 in TeX

׿
×
𝔽