metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.23D4, D12.25D4, Dic6.25D4, (C6×D8)⋊2C2, C8○D12⋊1C2, (C2×D8)⋊10S3, (C2×C8).87D6, C4.61(S3×D4), (C2×D4).67D6, C24.C4⋊3C2, D12⋊6C22⋊4C2, C12.169(C2×D4), C12.D4⋊7C2, C3⋊4(D4.4D4), C8.27(C3⋊D4), (C2×C24).32C22, (C6×D4).86C22, C2.18(D6⋊3D4), C6.111(C4⋊D4), (C2×C12).437C23, C4○D12.46C22, C4.Dic3.19C22, C22.20(D4⋊2S3), C4.81(C2×C3⋊D4), (C2×C6).158(C4○D4), (C2×C4).126(C22×S3), SmallGroup(192,719)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.23D4
G = < a,b,c | a24=c2=1, b4=a12, bab-1=a-1, cac=a17, cbc=a12b3 >
Subgroups: 312 in 108 conjugacy classes, 37 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C8, C2×C8, M4(2), D8, SD16, C2×D4, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×C6, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, S3×C8, C8⋊S3, C4.Dic3, C4.Dic3, D4⋊S3, D4.S3, C2×C24, C3×D8, C4○D12, C6×D4, D4.4D4, C24.C4, C12.D4, C8○D12, D12⋊6C22, C6×D8, C24.23D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, S3×D4, D4⋊2S3, C2×C3⋊D4, D4.4D4, D6⋊3D4, C24.23D4
Character table of C24.23D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 8 | 8 | 12 | 2 | 2 | 2 | 12 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 4 | 12 | 12 | 24 | 24 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | 2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | 2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | √-3 | -√-3 | -√-3 | √-3 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | √-3 | √-3 | -√-3 | -√-3 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | -√-3 | -√-3 | √-3 | √-3 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 1 | 1 | -1 | -√-3 | √-3 | √-3 | -√-3 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ26 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | -4 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √-6 | -√-6 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√-6 | √-6 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√-6 | √-6 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √-6 | -√-6 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 48 19 30 13 36 7 42)(2 47 20 29 14 35 8 41)(3 46 21 28 15 34 9 40)(4 45 22 27 16 33 10 39)(5 44 23 26 17 32 11 38)(6 43 24 25 18 31 12 37)
(1 33)(2 26)(3 43)(4 36)(5 29)(6 46)(7 39)(8 32)(9 25)(10 42)(11 35)(12 28)(13 45)(14 38)(15 31)(16 48)(17 41)(18 34)(19 27)(20 44)(21 37)(22 30)(23 47)(24 40)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,48,19,30,13,36,7,42)(2,47,20,29,14,35,8,41)(3,46,21,28,15,34,9,40)(4,45,22,27,16,33,10,39)(5,44,23,26,17,32,11,38)(6,43,24,25,18,31,12,37), (1,33)(2,26)(3,43)(4,36)(5,29)(6,46)(7,39)(8,32)(9,25)(10,42)(11,35)(12,28)(13,45)(14,38)(15,31)(16,48)(17,41)(18,34)(19,27)(20,44)(21,37)(22,30)(23,47)(24,40)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,48,19,30,13,36,7,42)(2,47,20,29,14,35,8,41)(3,46,21,28,15,34,9,40)(4,45,22,27,16,33,10,39)(5,44,23,26,17,32,11,38)(6,43,24,25,18,31,12,37), (1,33)(2,26)(3,43)(4,36)(5,29)(6,46)(7,39)(8,32)(9,25)(10,42)(11,35)(12,28)(13,45)(14,38)(15,31)(16,48)(17,41)(18,34)(19,27)(20,44)(21,37)(22,30)(23,47)(24,40) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,48,19,30,13,36,7,42),(2,47,20,29,14,35,8,41),(3,46,21,28,15,34,9,40),(4,45,22,27,16,33,10,39),(5,44,23,26,17,32,11,38),(6,43,24,25,18,31,12,37)], [(1,33),(2,26),(3,43),(4,36),(5,29),(6,46),(7,39),(8,32),(9,25),(10,42),(11,35),(12,28),(13,45),(14,38),(15,31),(16,48),(17,41),(18,34),(19,27),(20,44),(21,37),(22,30),(23,47),(24,40)]])
Matrix representation of C24.23D4 ►in GL4(𝔽7) generated by
2 | 1 | 2 | 1 |
6 | 1 | 3 | 1 |
6 | 4 | 3 | 3 |
2 | 2 | 0 | 4 |
1 | 3 | 6 | 1 |
3 | 0 | 1 | 5 |
1 | 3 | 5 | 0 |
3 | 5 | 2 | 1 |
5 | 1 | 0 | 0 |
4 | 2 | 0 | 0 |
6 | 3 | 5 | 1 |
5 | 1 | 4 | 2 |
G:=sub<GL(4,GF(7))| [2,6,6,2,1,1,4,2,2,3,3,0,1,1,3,4],[1,3,1,3,3,0,3,5,6,1,5,2,1,5,0,1],[5,4,6,5,1,2,3,1,0,0,5,4,0,0,1,2] >;
C24.23D4 in GAP, Magma, Sage, TeX
C_{24}._{23}D_4
% in TeX
G:=Group("C24.23D4");
// GroupNames label
G:=SmallGroup(192,719);
// by ID
G=gap.SmallGroup(192,719);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,1123,297,136,438,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=c^2=1,b^4=a^12,b*a*b^-1=a^-1,c*a*c=a^17,c*b*c=a^12*b^3>;
// generators/relations
Export