Copied to
clipboard

G = D12.2D4order 192 = 26·3

2nd non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.2D4, Dic6.2D4, M4(2).1D6, C3⋊C8.24D4, D12.C45C2, (C2×D4).15D6, C4.D43S3, C8.D66C2, C4.148(S3×D4), C12.93(C2×D4), C6.9(C4⋊D4), C31(D4.3D4), (C2×C12).5C23, C12.53D41C2, D126C22.1C2, C4○D12.3C22, (C6×D4).15C22, C12.47D410C2, C2.12(Dic3⋊D4), C4.Dic3.2C22, C22.13(C4○D12), (C2×Dic6).45C22, (C3×M4(2)).18C22, (C2×D4.S3)⋊1C2, (C2×C3⋊C8).1C22, (C3×C4.D4)⋊1C2, (C2×C4).5(C22×S3), (C2×C6).30(C4○D4), SmallGroup(192,307)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D12.2D4
C1C3C6C12C2×C12C4○D12D12.C4 — D12.2D4
C3C6C2×C12 — D12.2D4
C1C2C2×C4C4.D4

Generators and relations for D12.2D4
 G = < a,b,c,d | a12=b2=1, c4=a6, d2=a9, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, dbd-1=a3b, dcd-1=a3c3 >

Subgroups: 304 in 104 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C3⋊C8, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×C6, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, S3×C8, C8⋊S3, C24⋊C2, Dic12, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, C3×M4(2), C2×Dic6, C4○D12, C6×D4, D4.3D4, C12.53D4, C12.47D4, C3×C4.D4, D12.C4, C8.D6, D126C22, C2×D4.S3, D12.2D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C4○D12, S3×D4, D4.3D4, Dic3⋊D4, D12.2D4

Character table of D12.2D4

 class 12A2B2C2D34A4B4C4D6A6B6C6D8A8B8C8D8E8F8G12A12B24A24B24C24D
 size 11281222212242488446681224448888
ρ1111111111111111111111111111    trivial
ρ21111-1111-111111-1-111-11-111-1-1-1-1    linear of order 2
ρ3111-111111-111-1-11111-11-111-111-1    linear of order 2
ρ4111-1-1111-1-111-1-1-1-111111111-1-11    linear of order 2
ρ5111-111111111-1-1-1-1-1-11-1-1111-1-11    linear of order 2
ρ6111-1-1111-1111-1-111-1-1-1-1111-111-1    linear of order 2
ρ7111111111-11111-1-1-1-1-1-1111-1-1-1-1    linear of order 2
ρ81111-1111-1-1111111-1-11-1-1111111    linear of order 2
ρ9222-20-12200-1-1112200-200-1-11-1-11    orthogonal lifted from D6
ρ1022-2022-22-202-20000000002-20000    orthogonal lifted from D4
ρ1122220-12200-1-1-1-1-2-200-200-1-11111    orthogonal lifted from D6
ρ1222-20-22-22202-20000000002-20000    orthogonal lifted from D4
ρ1322220-12200-1-1-1-12200200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422-20022-2002-20000-2-2020-220000    orthogonal lifted from D4
ρ15222-20-12200-1-111-2-200200-1-1-111-1    orthogonal lifted from D6
ρ1622-20022-2002-20000220-20-220000    orthogonal lifted from D4
ρ17222002-2-20022002i-2i00000-2-202i-2i0    complex lifted from C4○D4
ρ18222002-2-2002200-2i2i00000-2-20-2i2i0    complex lifted from C4○D4
ρ1922200-1-2-200-1-1-3--3-2i2i0000011-3i-i3    complex lifted from C4○D12
ρ2022200-1-2-200-1-1--3-3-2i2i00000113i-i-3    complex lifted from C4○D12
ρ2122200-1-2-200-1-1--3-32i-2i0000011-3-ii3    complex lifted from C4○D12
ρ2222200-1-2-200-1-1-3--32i-2i00000113-ii-3    complex lifted from C4○D12
ρ2344-400-2-4400-22000000000-220000    orthogonal lifted from S3×D4
ρ2444-400-24-400-220000000002-20000    orthogonal lifted from S3×D4
ρ254-400040000-4000002-2-2-2000000000    complex lifted from D4.3D4
ρ264-400040000-400000-2-22-2000000000    complex lifted from D4.3D4
ρ278-8000-4000040000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of D12.2D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 36)(9 35)(10 34)(11 33)(12 32)(13 38)(14 37)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)
(1 22 10 13 7 16 4 19)(2 17 11 20 8 23 5 14)(3 24 12 15 9 18 6 21)(25 41 28 38 31 47 34 44)(26 48 29 45 32 42 35 39)(27 43 30 40 33 37 36 46)
(1 16 10 13 7 22 4 19)(2 17 11 14 8 23 5 20)(3 18 12 15 9 24 6 21)(25 44 34 41 31 38 28 47)(26 45 35 42 32 39 29 48)(27 46 36 43 33 40 30 37)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39), (1,22,10,13,7,16,4,19)(2,17,11,20,8,23,5,14)(3,24,12,15,9,18,6,21)(25,41,28,38,31,47,34,44)(26,48,29,45,32,42,35,39)(27,43,30,40,33,37,36,46), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,44,34,41,31,38,28,47)(26,45,35,42,32,39,29,48)(27,46,36,43,33,40,30,37)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39), (1,22,10,13,7,16,4,19)(2,17,11,20,8,23,5,14)(3,24,12,15,9,18,6,21)(25,41,28,38,31,47,34,44)(26,48,29,45,32,42,35,39)(27,43,30,40,33,37,36,46), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,44,34,41,31,38,28,47)(26,45,35,42,32,39,29,48)(27,46,36,43,33,40,30,37) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,36),(9,35),(10,34),(11,33),(12,32),(13,38),(14,37),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39)], [(1,22,10,13,7,16,4,19),(2,17,11,20,8,23,5,14),(3,24,12,15,9,18,6,21),(25,41,28,38,31,47,34,44),(26,48,29,45,32,42,35,39),(27,43,30,40,33,37,36,46)], [(1,16,10,13,7,22,4,19),(2,17,11,14,8,23,5,20),(3,18,12,15,9,24,6,21),(25,44,34,41,31,38,28,47),(26,45,35,42,32,39,29,48),(27,46,36,43,33,40,30,37)]])

Matrix representation of D12.2D4 in GL6(𝔽73)

6400000
7180000
00722900
0010100
002245163
0045294472
,
850000
2650000
0032455612
00590120
0013104114
001028280
,
7200000
0720000
00270290
0001010
0001460
0010072
,
100000
010000
00270290
002272263
0001460
002744291

G:=sub<GL(6,GF(73))| [64,71,0,0,0,0,0,8,0,0,0,0,0,0,72,10,22,45,0,0,29,1,45,29,0,0,0,0,1,44,0,0,0,0,63,72],[8,2,0,0,0,0,5,65,0,0,0,0,0,0,32,59,13,10,0,0,45,0,10,28,0,0,56,12,41,28,0,0,12,0,14,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,1,0,0,0,1,1,0,0,0,29,0,46,0,0,0,0,10,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,22,0,27,0,0,0,72,1,44,0,0,29,2,46,29,0,0,0,63,0,1] >;

D12.2D4 in GAP, Magma, Sage, TeX

D_{12}._2D_4
% in TeX

G:=Group("D12.2D4");
// GroupNames label

G:=SmallGroup(192,307);
// by ID

G=gap.SmallGroup(192,307);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,297,136,1684,851,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^9,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^3>;
// generators/relations

Export

Character table of D12.2D4 in TeX

׿
×
𝔽