Copied to
clipboard

G = D12.2D4order 192 = 26·3

2nd non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.2D4, Dic6.2D4, M4(2).1D6, C3⋊C8.24D4, D12.C45C2, (C2×D4).15D6, C4.D43S3, C8.D66C2, C4.148(S3×D4), C12.93(C2×D4), C6.9(C4⋊D4), C31(D4.3D4), (C2×C12).5C23, C12.53D41C2, D126C22.1C2, C4○D12.3C22, (C6×D4).15C22, C12.47D410C2, C2.12(Dic3⋊D4), C4.Dic3.2C22, C22.13(C4○D12), (C2×Dic6).45C22, (C3×M4(2)).18C22, (C2×D4.S3)⋊1C2, (C2×C3⋊C8).1C22, (C3×C4.D4)⋊1C2, (C2×C4).5(C22×S3), (C2×C6).30(C4○D4), SmallGroup(192,307)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D12.2D4
C1C3C6C12C2×C12C4○D12D12.C4 — D12.2D4
C3C6C2×C12 — D12.2D4
C1C2C2×C4C4.D4

Generators and relations for D12.2D4
 G = < a,b,c,d | a12=b2=1, c4=a6, d2=a9, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, dbd-1=a3b, dcd-1=a3c3 >

Subgroups: 304 in 104 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2 [×3], C3, C4 [×2], C4 [×2], C22, C22 [×3], S3, C6, C6 [×2], C8 [×5], C2×C4, C2×C4 [×2], D4 [×4], Q8 [×3], C23, Dic3 [×2], C12 [×2], D6, C2×C6, C2×C6 [×2], C2×C8 [×2], M4(2) [×2], M4(2) [×2], D8, SD16 [×4], Q16, C2×D4, C2×Q8, C4○D4, C3⋊C8 [×2], C3⋊C8, C24 [×2], Dic6, Dic6 [×2], C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4 [×2], C22×C6, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, S3×C8, C8⋊S3, C24⋊C2, Dic12, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3 [×3], C3×M4(2) [×2], C2×Dic6, C4○D12, C6×D4, D4.3D4, C12.53D4, C12.47D4, C3×C4.D4, D12.C4, C8.D6, D126C22, C2×D4.S3, D12.2D4
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×4], C23, D6 [×3], C2×D4 [×2], C4○D4, C22×S3, C4⋊D4, C4○D12, S3×D4 [×2], D4.3D4, Dic3⋊D4, D12.2D4

Character table of D12.2D4

 class 12A2B2C2D34A4B4C4D6A6B6C6D8A8B8C8D8E8F8G12A12B24A24B24C24D
 size 11281222212242488446681224448888
ρ1111111111111111111111111111    trivial
ρ21111-1111-111111-1-111-11-111-1-1-1-1    linear of order 2
ρ3111-111111-111-1-11111-11-111-111-1    linear of order 2
ρ4111-1-1111-1-111-1-1-1-111111111-1-11    linear of order 2
ρ5111-111111111-1-1-1-1-1-11-1-1111-1-11    linear of order 2
ρ6111-1-1111-1111-1-111-1-1-1-1111-111-1    linear of order 2
ρ7111111111-11111-1-1-1-1-1-1111-1-1-1-1    linear of order 2
ρ81111-1111-1-1111111-1-11-1-1111111    linear of order 2
ρ9222-20-12200-1-1112200-200-1-11-1-11    orthogonal lifted from D6
ρ1022-2022-22-202-20000000002-20000    orthogonal lifted from D4
ρ1122220-12200-1-1-1-1-2-200-200-1-11111    orthogonal lifted from D6
ρ1222-20-22-22202-20000000002-20000    orthogonal lifted from D4
ρ1322220-12200-1-1-1-12200200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422-20022-2002-20000-2-2020-220000    orthogonal lifted from D4
ρ15222-20-12200-1-111-2-200200-1-1-111-1    orthogonal lifted from D6
ρ1622-20022-2002-20000220-20-220000    orthogonal lifted from D4
ρ17222002-2-20022002i-2i00000-2-202i-2i0    complex lifted from C4○D4
ρ18222002-2-2002200-2i2i00000-2-20-2i2i0    complex lifted from C4○D4
ρ1922200-1-2-200-1-1-3--3-2i2i0000011-3i-i3    complex lifted from C4○D12
ρ2022200-1-2-200-1-1--3-3-2i2i00000113i-i-3    complex lifted from C4○D12
ρ2122200-1-2-200-1-1--3-32i-2i0000011-3-ii3    complex lifted from C4○D12
ρ2222200-1-2-200-1-1-3--32i-2i00000113-ii-3    complex lifted from C4○D12
ρ2344-400-2-4400-22000000000-220000    orthogonal lifted from S3×D4
ρ2444-400-24-400-220000000002-20000    orthogonal lifted from S3×D4
ρ254-400040000-4000002-2-2-2000000000    complex lifted from D4.3D4
ρ264-400040000-400000-2-22-2000000000    complex lifted from D4.3D4
ρ278-8000-4000040000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of D12.2D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 27)(10 26)(11 25)(12 36)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 48)(22 47)(23 46)(24 45)
(1 22 10 13 7 16 4 19)(2 17 11 20 8 23 5 14)(3 24 12 15 9 18 6 21)(25 43 28 40 31 37 34 46)(26 38 29 47 32 44 35 41)(27 45 30 42 33 39 36 48)
(1 16 10 13 7 22 4 19)(2 17 11 14 8 23 5 20)(3 18 12 15 9 24 6 21)(25 46 34 43 31 40 28 37)(26 47 35 44 32 41 29 38)(27 48 36 45 33 42 30 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,36)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45), (1,22,10,13,7,16,4,19)(2,17,11,20,8,23,5,14)(3,24,12,15,9,18,6,21)(25,43,28,40,31,37,34,46)(26,38,29,47,32,44,35,41)(27,45,30,42,33,39,36,48), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,46,34,43,31,40,28,37)(26,47,35,44,32,41,29,38)(27,48,36,45,33,42,30,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,36)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45), (1,22,10,13,7,16,4,19)(2,17,11,20,8,23,5,14)(3,24,12,15,9,18,6,21)(25,43,28,40,31,37,34,46)(26,38,29,47,32,44,35,41)(27,45,30,42,33,39,36,48), (1,16,10,13,7,22,4,19)(2,17,11,14,8,23,5,20)(3,18,12,15,9,24,6,21)(25,46,34,43,31,40,28,37)(26,47,35,44,32,41,29,38)(27,48,36,45,33,42,30,39) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,27),(10,26),(11,25),(12,36),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,48),(22,47),(23,46),(24,45)], [(1,22,10,13,7,16,4,19),(2,17,11,20,8,23,5,14),(3,24,12,15,9,18,6,21),(25,43,28,40,31,37,34,46),(26,38,29,47,32,44,35,41),(27,45,30,42,33,39,36,48)], [(1,16,10,13,7,22,4,19),(2,17,11,14,8,23,5,20),(3,18,12,15,9,24,6,21),(25,46,34,43,31,40,28,37),(26,47,35,44,32,41,29,38),(27,48,36,45,33,42,30,39)])

Matrix representation of D12.2D4 in GL6(𝔽73)

6400000
7180000
00722900
0010100
002245163
0045294472
,
850000
2650000
0032455612
00590120
0013104114
001028280
,
7200000
0720000
00270290
0001010
0001460
0010072
,
100000
010000
00270290
002272263
0001460
002744291

G:=sub<GL(6,GF(73))| [64,71,0,0,0,0,0,8,0,0,0,0,0,0,72,10,22,45,0,0,29,1,45,29,0,0,0,0,1,44,0,0,0,0,63,72],[8,2,0,0,0,0,5,65,0,0,0,0,0,0,32,59,13,10,0,0,45,0,10,28,0,0,56,12,41,28,0,0,12,0,14,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,1,0,0,0,1,1,0,0,0,29,0,46,0,0,0,0,10,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,22,0,27,0,0,0,72,1,44,0,0,29,2,46,29,0,0,0,63,0,1] >;

D12.2D4 in GAP, Magma, Sage, TeX

D_{12}._2D_4
% in TeX

G:=Group("D12.2D4");
// GroupNames label

G:=SmallGroup(192,307);
// by ID

G=gap.SmallGroup(192,307);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,297,136,1684,851,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^9,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^3>;
// generators/relations

Export

Character table of D12.2D4 in TeX

׿
×
𝔽