Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D4.S3

Direct product G=N×Q with N=C2 and Q=C2×D4.S3
dρLabelID
C22×D4.S396C2^2xD4.S3192,1353


Non-split extensions G=N.Q with N=C2 and Q=C2×D4.S3
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D4.S3) = C2×C12.Q8central extension (φ=1)192C2.1(C2xD4.S3)192,522
C2.2(C2×D4.S3) = C2×C6.SD16central extension (φ=1)192C2.2(C2xD4.S3)192,528
C2.3(C2×D4.S3) = C4×D4.S3central extension (φ=1)96C2.3(C2xD4.S3)192,576
C2.4(C2×D4.S3) = C2×D4⋊Dic3central extension (φ=1)96C2.4(C2xD4.S3)192,773
C2.5(C2×D4.S3) = C4⋊C4.231D6central stem extension (φ=1)96C2.5(C2xD4.S3)192,530
C2.6(C2×D4.S3) = C12.38SD16central stem extension (φ=1)96C2.6(C2xD4.S3)192,567
C2.7(C2×D4.S3) = D4.2D12central stem extension (φ=1)96C2.7(C2xD4.S3)192,578
C2.8(C2×D4.S3) = C4⋊D4.S3central stem extension (φ=1)96C2.8(C2xD4.S3)192,593
C2.9(C2×D4.S3) = Dic617D4central stem extension (φ=1)96C2.9(C2xD4.S3)192,599
C2.10(C2×D4.S3) = C3⋊C823D4central stem extension (φ=1)96C2.10(C2xD4.S3)192,600
C2.11(C2×D4.S3) = C12.16D8central stem extension (φ=1)96C2.11(C2xD4.S3)192,629
C2.12(C2×D4.S3) = Dic69D4central stem extension (φ=1)96C2.12(C2xD4.S3)192,634
C2.13(C2×D4.S3) = C124SD16central stem extension (φ=1)96C2.13(C2xD4.S3)192,635
C2.14(C2×D4.S3) = C12.SD16central stem extension (φ=1)192C2.14(C2xD4.S3)192,639
C2.15(C2×D4.S3) = C12.Q16central stem extension (φ=1)192C2.15(C2xD4.S3)192,652
C2.16(C2×D4.S3) = Dic66Q8central stem extension (φ=1)192C2.16(C2xD4.S3)192,653
C2.17(C2×D4.S3) = (C3×D4).31D4central stem extension (φ=1)48C2.17(C2xD4.S3)192,777

׿
×
𝔽