Copied to
clipboard

G = C3:C8:23D4order 192 = 26·3

5th semidirect product of C3:C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3:C8:23D4, C3:4(C8:8D4), C4:C4.61D6, (C2xC6):4SD16, (C2xD4).41D6, C4:D4.6S3, C4.172(S3xD4), C6.98(C4oD8), (C2xC12).264D4, C12.150(C2xD4), C6.56(C2xSD16), (C22xC6).87D4, D4:Dic3:17C2, C6.SD16:35C2, C6.95(C4:D4), C22:2(D4.S3), C12.Q8:36C2, (C6xD4).57C22, (C22xC4).357D6, C12.185(C4oD4), C12.48D4:24C2, C4.61(D4:2S3), (C2xC12).360C23, C23.47(C3:D4), C2.17(Q8.13D6), C4:Dic3.144C22, C2.16(C23.14D6), (C22xC12).164C22, (C2xDic6).103C22, (C22xC3:C8):4C2, (C2xD4.S3):10C2, (C3xC4:D4).5C2, (C2xC6).491(C2xD4), C2.10(C2xD4.S3), (C2xC3:C8).249C22, (C2xC4).106(C3:D4), (C3xC4:C4).108C22, (C2xC4).460(C22xS3), C22.166(C2xC3:D4), SmallGroup(192,600)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C3:C8:23D4
C1C3C6C12C2xC12C2xDic6C12.48D4 — C3:C8:23D4
C3C6C2xC12 — C3:C8:23D4
C1C22C22xC4C4:D4

Generators and relations for C3:C8:23D4
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b3, bd=db, dcd=c-1 >

Subgroups: 320 in 124 conjugacy classes, 45 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C4:C4, C2xC8, SD16, C22xC4, C2xD4, C2xD4, C2xQ8, C3:C8, C3:C8, Dic6, C2xDic3, C2xC12, C2xC12, C3xD4, C22xC6, C22xC6, D4:C4, Q8:C4, C4.Q8, C4:D4, C22:Q8, C22xC8, C2xSD16, C2xC3:C8, C2xC3:C8, Dic3:C4, C4:Dic3, D4.S3, C6.D4, C3xC22:C4, C3xC4:C4, C2xDic6, C22xC12, C6xD4, C6xD4, C8:8D4, C12.Q8, C6.SD16, D4:Dic3, C22xC3:C8, C12.48D4, C2xD4.S3, C3xC4:D4, C3:C8:23D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2xD4, C4oD4, C3:D4, C22xS3, C4:D4, C2xSD16, C4oD8, D4.S3, S3xD4, D4:2S3, C2xC3:D4, C8:8D4, C2xD4.S3, C23.14D6, Q8.13D6, C3:C8:23D4

Smallest permutation representation of C3:C8:23D4
On 96 points
Generators in S96
(1 46 61)(2 62 47)(3 48 63)(4 64 41)(5 42 57)(6 58 43)(7 44 59)(8 60 45)(9 86 34)(10 35 87)(11 88 36)(12 37 81)(13 82 38)(14 39 83)(15 84 40)(16 33 85)(17 28 93)(18 94 29)(19 30 95)(20 96 31)(21 32 89)(22 90 25)(23 26 91)(24 92 27)(49 75 71)(50 72 76)(51 77 65)(52 66 78)(53 79 67)(54 68 80)(55 73 69)(56 70 74)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 74 91 16)(2 77 92 11)(3 80 93 14)(4 75 94 9)(5 78 95 12)(6 73 96 15)(7 76 89 10)(8 79 90 13)(17 39 48 54)(18 34 41 49)(19 37 42 52)(20 40 43 55)(21 35 44 50)(22 38 45 53)(23 33 46 56)(24 36 47 51)(25 82 60 67)(26 85 61 70)(27 88 62 65)(28 83 63 68)(29 86 64 71)(30 81 57 66)(31 84 58 69)(32 87 59 72)
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 49)(25 69)(26 70)(27 71)(28 72)(29 65)(30 66)(31 67)(32 68)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 89)

G:=sub<Sym(96)| (1,46,61)(2,62,47)(3,48,63)(4,64,41)(5,42,57)(6,58,43)(7,44,59)(8,60,45)(9,86,34)(10,35,87)(11,88,36)(12,37,81)(13,82,38)(14,39,83)(15,84,40)(16,33,85)(17,28,93)(18,94,29)(19,30,95)(20,96,31)(21,32,89)(22,90,25)(23,26,91)(24,92,27)(49,75,71)(50,72,76)(51,77,65)(52,66,78)(53,79,67)(54,68,80)(55,73,69)(56,70,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,74,91,16)(2,77,92,11)(3,80,93,14)(4,75,94,9)(5,78,95,12)(6,73,96,15)(7,76,89,10)(8,79,90,13)(17,39,48,54)(18,34,41,49)(19,37,42,52)(20,40,43,55)(21,35,44,50)(22,38,45,53)(23,33,46,56)(24,36,47,51)(25,82,60,67)(26,85,61,70)(27,88,62,65)(28,83,63,68)(29,86,64,71)(30,81,57,66)(31,84,58,69)(32,87,59,72), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89)>;

G:=Group( (1,46,61)(2,62,47)(3,48,63)(4,64,41)(5,42,57)(6,58,43)(7,44,59)(8,60,45)(9,86,34)(10,35,87)(11,88,36)(12,37,81)(13,82,38)(14,39,83)(15,84,40)(16,33,85)(17,28,93)(18,94,29)(19,30,95)(20,96,31)(21,32,89)(22,90,25)(23,26,91)(24,92,27)(49,75,71)(50,72,76)(51,77,65)(52,66,78)(53,79,67)(54,68,80)(55,73,69)(56,70,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,74,91,16)(2,77,92,11)(3,80,93,14)(4,75,94,9)(5,78,95,12)(6,73,96,15)(7,76,89,10)(8,79,90,13)(17,39,48,54)(18,34,41,49)(19,37,42,52)(20,40,43,55)(21,35,44,50)(22,38,45,53)(23,33,46,56)(24,36,47,51)(25,82,60,67)(26,85,61,70)(27,88,62,65)(28,83,63,68)(29,86,64,71)(30,81,57,66)(31,84,58,69)(32,87,59,72), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89) );

G=PermutationGroup([[(1,46,61),(2,62,47),(3,48,63),(4,64,41),(5,42,57),(6,58,43),(7,44,59),(8,60,45),(9,86,34),(10,35,87),(11,88,36),(12,37,81),(13,82,38),(14,39,83),(15,84,40),(16,33,85),(17,28,93),(18,94,29),(19,30,95),(20,96,31),(21,32,89),(22,90,25),(23,26,91),(24,92,27),(49,75,71),(50,72,76),(51,77,65),(52,66,78),(53,79,67),(54,68,80),(55,73,69),(56,70,74)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,74,91,16),(2,77,92,11),(3,80,93,14),(4,75,94,9),(5,78,95,12),(6,73,96,15),(7,76,89,10),(8,79,90,13),(17,39,48,54),(18,34,41,49),(19,37,42,52),(20,40,43,55),(21,35,44,50),(22,38,45,53),(23,33,46,56),(24,36,47,51),(25,82,60,67),(26,85,61,70),(27,88,62,65),(28,83,63,68),(29,86,64,71),(30,81,57,66),(31,84,58,69),(32,87,59,72)], [(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,49),(25,69),(26,70),(27,71),(28,72),(29,65),(30,66),(31,67),(32,68),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,89)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G8A···8H12A12B12C12D12E12F
order12222223444444466666668···8121212121212
size1111228222228242422244886···6444488

36 irreducible representations

dim111111112222222222224444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6D6C4oD4SD16C3:D4C3:D4C4oD8S3xD4D4:2S3D4.S3Q8.13D6
kernelC3:C8:23D4C12.Q8C6.SD16D4:Dic3C22xC3:C8C12.48D4C2xD4.S3C3xC4:D4C4:D4C3:C8C2xC12C22xC6C4:C4C22xC4C2xD4C12C2xC6C2xC4C23C6C4C4C22C2
# reps111111111211111242241122

Matrix representation of C3:C8:23D4 in GL6(F73)

100000
010000
001000
000100
0000640
0000208
,
6760000
67670000
0013600
0047200
000094
00001664
,
100000
0720000
00272300
0004600
0000720
0000411
,
100000
010000
00272300
00354600
0000720
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,20,0,0,0,0,0,8],[67,67,0,0,0,0,6,67,0,0,0,0,0,0,1,4,0,0,0,0,36,72,0,0,0,0,0,0,9,16,0,0,0,0,4,64],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,0,0,0,23,46,0,0,0,0,0,0,72,41,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,35,0,0,0,0,23,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

C3:C8:23D4 in GAP, Magma, Sage, TeX

C_3\rtimes C_8\rtimes_{23}D_4
% in TeX

G:=Group("C3:C8:23D4");
// GroupNames label

G:=SmallGroup(192,600);
// by ID

G=gap.SmallGroup(192,600);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<