metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C3×D4).31D4, (C2×C6)⋊11SD16, C6.72C22≀C2, (C2×D4).199D6, C12.206(C2×D4), (C2×C12).301D4, C3⋊5(C22⋊SD16), C6.64(C2×SD16), (C22×D4).5S3, D4⋊Dic3⋊39C2, D4.13(C3⋊D4), C4⋊Dic3⋊22C22, C22⋊4(D4.S3), (C22×C6).197D4, (C22×C4).166D6, C12.55D4⋊16C2, C12.48D4⋊26C2, C6.103(C8⋊C22), (C2×C12).473C23, C2.5(C24⋊4S3), (C2×Dic6)⋊15C22, (C6×D4).241C22, C23.93(C3⋊D4), C2.23(D12⋊6C22), (C22×C12).198C22, (D4×C2×C6).4C2, (C2×C3⋊C8)⋊11C22, C4.59(C2×C3⋊D4), (C2×D4.S3)⋊23C2, (C2×C6).554(C2×D4), C2.17(C2×D4.S3), (C2×C4).84(C3⋊D4), (C2×C4).559(C22×S3), C22.217(C2×C3⋊D4), SmallGroup(192,777)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C3×D4).31D4
G = < a,b,c,d,e | a3=b4=c2=1, d4=e2=b2, ab=ba, ac=ca, dad-1=eae-1=a-1, cbc=ebe-1=b-1, bd=db, dcd-1=bc, ece-1=b-1c, ede-1=d3 >
Subgroups: 488 in 188 conjugacy classes, 51 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C3⋊C8, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D4.S3, C6.D4, C2×Dic6, C22×C12, C6×D4, C6×D4, C23×C6, C22⋊SD16, C12.55D4, D4⋊Dic3, C12.48D4, C2×D4.S3, D4×C2×C6, (C3×D4).31D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊D4, C22×S3, C22≀C2, C2×SD16, C8⋊C22, D4.S3, C2×C3⋊D4, C22⋊SD16, D12⋊6C22, C2×D4.S3, C24⋊4S3, (C3×D4).31D4
(1 39 45)(2 46 40)(3 33 47)(4 48 34)(5 35 41)(6 42 36)(7 37 43)(8 44 38)(9 23 29)(10 30 24)(11 17 31)(12 32 18)(13 19 25)(14 26 20)(15 21 27)(16 28 22)
(1 15 5 11)(2 16 6 12)(3 9 7 13)(4 10 8 14)(17 39 21 35)(18 40 22 36)(19 33 23 37)(20 34 24 38)(25 47 29 43)(26 48 30 44)(27 41 31 45)(28 42 32 46)
(1 13)(2 8)(3 11)(4 6)(5 9)(7 15)(10 16)(12 14)(17 33)(18 20)(19 39)(21 37)(22 24)(23 35)(25 45)(26 32)(27 43)(28 30)(29 41)(31 47)(34 36)(38 40)(42 48)(44 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 2 5 6)(3 8 7 4)(9 10 13 14)(11 16 15 12)(17 22 21 18)(19 20 23 24)(25 26 29 30)(27 32 31 28)(33 38 37 34)(35 36 39 40)(41 42 45 46)(43 48 47 44)
G:=sub<Sym(48)| (1,39,45)(2,46,40)(3,33,47)(4,48,34)(5,35,41)(6,42,36)(7,37,43)(8,44,38)(9,23,29)(10,30,24)(11,17,31)(12,32,18)(13,19,25)(14,26,20)(15,21,27)(16,28,22), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,39,21,35)(18,40,22,36)(19,33,23,37)(20,34,24,38)(25,47,29,43)(26,48,30,44)(27,41,31,45)(28,42,32,46), (1,13)(2,8)(3,11)(4,6)(5,9)(7,15)(10,16)(12,14)(17,33)(18,20)(19,39)(21,37)(22,24)(23,35)(25,45)(26,32)(27,43)(28,30)(29,41)(31,47)(34,36)(38,40)(42,48)(44,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2,5,6)(3,8,7,4)(9,10,13,14)(11,16,15,12)(17,22,21,18)(19,20,23,24)(25,26,29,30)(27,32,31,28)(33,38,37,34)(35,36,39,40)(41,42,45,46)(43,48,47,44)>;
G:=Group( (1,39,45)(2,46,40)(3,33,47)(4,48,34)(5,35,41)(6,42,36)(7,37,43)(8,44,38)(9,23,29)(10,30,24)(11,17,31)(12,32,18)(13,19,25)(14,26,20)(15,21,27)(16,28,22), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,39,21,35)(18,40,22,36)(19,33,23,37)(20,34,24,38)(25,47,29,43)(26,48,30,44)(27,41,31,45)(28,42,32,46), (1,13)(2,8)(3,11)(4,6)(5,9)(7,15)(10,16)(12,14)(17,33)(18,20)(19,39)(21,37)(22,24)(23,35)(25,45)(26,32)(27,43)(28,30)(29,41)(31,47)(34,36)(38,40)(42,48)(44,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,2,5,6)(3,8,7,4)(9,10,13,14)(11,16,15,12)(17,22,21,18)(19,20,23,24)(25,26,29,30)(27,32,31,28)(33,38,37,34)(35,36,39,40)(41,42,45,46)(43,48,47,44) );
G=PermutationGroup([[(1,39,45),(2,46,40),(3,33,47),(4,48,34),(5,35,41),(6,42,36),(7,37,43),(8,44,38),(9,23,29),(10,30,24),(11,17,31),(12,32,18),(13,19,25),(14,26,20),(15,21,27),(16,28,22)], [(1,15,5,11),(2,16,6,12),(3,9,7,13),(4,10,8,14),(17,39,21,35),(18,40,22,36),(19,33,23,37),(20,34,24,38),(25,47,29,43),(26,48,30,44),(27,41,31,45),(28,42,32,46)], [(1,13),(2,8),(3,11),(4,6),(5,9),(7,15),(10,16),(12,14),(17,33),(18,20),(19,39),(21,37),(22,24),(23,35),(25,45),(26,32),(27,43),(28,30),(29,41),(31,47),(34,36),(38,40),(42,48),(44,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,2,5,6),(3,8,7,4),(9,10,13,14),(11,16,15,12),(17,22,21,18),(19,20,23,24),(25,26,29,30),(27,32,31,28),(33,38,37,34),(35,36,39,40),(41,42,45,46),(43,48,47,44)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 6A | ··· | 6G | 6H | ··· | 6O | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 24 | 24 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D4 | D6 | D6 | SD16 | C3⋊D4 | C3⋊D4 | C3⋊D4 | C8⋊C22 | D4.S3 | D12⋊6C22 |
kernel | (C3×D4).31D4 | C12.55D4 | D4⋊Dic3 | C12.48D4 | C2×D4.S3 | D4×C2×C6 | C22×D4 | C2×C12 | C3×D4 | C22×C6 | C22×C4 | C2×D4 | C2×C6 | C2×C4 | D4 | C23 | C6 | C22 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 2 | 8 | 2 | 1 | 2 | 2 |
Matrix representation of (C3×D4).31D4 ►in GL6(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 67 | 67 |
0 | 0 | 0 | 0 | 6 | 67 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 67 | 6 |
0 | 0 | 0 | 0 | 6 | 6 |
G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,67,6,0,0,0,0,67,67],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,67,6,0,0,0,0,6,6] >;
(C3×D4).31D4 in GAP, Magma, Sage, TeX
(C_3\times D_4)._{31}D_4
% in TeX
G:=Group("(C3xD4).31D4");
// GroupNames label
G:=SmallGroup(192,777);
// by ID
G=gap.SmallGroup(192,777);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,254,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=1,d^4=e^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations