Copied to
clipboard

G = C12.16D8order 192 = 26·3

16th non-split extension by C12 of D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.16D8, C12.15SD16, C42.217D6, C6.56(C2xD8), C4.5(D4:S3), (C2xD4).53D6, C4:1D4.4S3, C3:3(C4.4D8), C12:2Q8:19C2, (C2xC12).146D4, C4.3(D4.S3), C6.57(C2xSD16), C12.74(C4oD4), D4:Dic3:20C2, (C6xD4).69C22, C4.22(D4:2S3), (C2xC12).388C23, (C4xC12).118C22, C6.43(C4.4D4), C4:Dic3.154C22, C2.10(C23.12D6), (C4xC3:C8):14C2, C2.11(C2xD4:S3), (C3xC4:1D4).2C2, (C2xC6).519(C2xD4), C2.11(C2xD4.S3), (C2xC3:C8).256C22, (C2xC4).130(C3:D4), (C2xC4).486(C22xS3), C22.192(C2xC3:D4), SmallGroup(192,629)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C12.16D8
C1C3C6C2xC6C2xC12C2xC3:C8C4xC3:C8 — C12.16D8
C3C6C2xC12 — C12.16D8
C1C22C42C4:1D4

Generators and relations for C12.16D8
 G = < a,b,c | a12=b8=1, c2=a6, bab-1=a5, cac-1=a-1, cbc-1=a6b-1 >

Subgroups: 336 in 118 conjugacy classes, 47 normal (23 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C2xC6, C2xC6, C42, C4:C4, C2xC8, C2xD4, C2xD4, C2xQ8, C3:C8, Dic6, C2xDic3, C2xC12, C3xD4, C22xC6, C4xC8, D4:C4, C4:1D4, C4:Q8, C2xC3:C8, C4:Dic3, C4:Dic3, C4xC12, C2xDic6, C6xD4, C6xD4, C4.4D8, C4xC3:C8, D4:Dic3, C12:2Q8, C3xC4:1D4, C12.16D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, SD16, C2xD4, C4oD4, C3:D4, C22xS3, C4.4D4, C2xD8, C2xSD16, D4:S3, D4.S3, D4:2S3, C2xC3:D4, C4.4D8, C2xD4:S3, C2xD4.S3, C23.12D6, C12.16D8

Smallest permutation representation of C12.16D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 91 13 76 37 63 50 30)(2 96 14 81 38 68 51 35)(3 89 15 74 39 61 52 28)(4 94 16 79 40 66 53 33)(5 87 17 84 41 71 54 26)(6 92 18 77 42 64 55 31)(7 85 19 82 43 69 56 36)(8 90 20 75 44 62 57 29)(9 95 21 80 45 67 58 34)(10 88 22 73 46 72 59 27)(11 93 23 78 47 65 60 32)(12 86 24 83 48 70 49 25)
(1 33 7 27)(2 32 8 26)(3 31 9 25)(4 30 10 36)(5 29 11 35)(6 28 12 34)(13 66 19 72)(14 65 20 71)(15 64 21 70)(16 63 22 69)(17 62 23 68)(18 61 24 67)(37 79 43 73)(38 78 44 84)(39 77 45 83)(40 76 46 82)(41 75 47 81)(42 74 48 80)(49 95 55 89)(50 94 56 88)(51 93 57 87)(52 92 58 86)(53 91 59 85)(54 90 60 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,13,76,37,63,50,30)(2,96,14,81,38,68,51,35)(3,89,15,74,39,61,52,28)(4,94,16,79,40,66,53,33)(5,87,17,84,41,71,54,26)(6,92,18,77,42,64,55,31)(7,85,19,82,43,69,56,36)(8,90,20,75,44,62,57,29)(9,95,21,80,45,67,58,34)(10,88,22,73,46,72,59,27)(11,93,23,78,47,65,60,32)(12,86,24,83,48,70,49,25), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,66,19,72)(14,65,20,71)(15,64,21,70)(16,63,22,69)(17,62,23,68)(18,61,24,67)(37,79,43,73)(38,78,44,84)(39,77,45,83)(40,76,46,82)(41,75,47,81)(42,74,48,80)(49,95,55,89)(50,94,56,88)(51,93,57,87)(52,92,58,86)(53,91,59,85)(54,90,60,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,91,13,76,37,63,50,30)(2,96,14,81,38,68,51,35)(3,89,15,74,39,61,52,28)(4,94,16,79,40,66,53,33)(5,87,17,84,41,71,54,26)(6,92,18,77,42,64,55,31)(7,85,19,82,43,69,56,36)(8,90,20,75,44,62,57,29)(9,95,21,80,45,67,58,34)(10,88,22,73,46,72,59,27)(11,93,23,78,47,65,60,32)(12,86,24,83,48,70,49,25), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,66,19,72)(14,65,20,71)(15,64,21,70)(16,63,22,69)(17,62,23,68)(18,61,24,67)(37,79,43,73)(38,78,44,84)(39,77,45,83)(40,76,46,82)(41,75,47,81)(42,74,48,80)(49,95,55,89)(50,94,56,88)(51,93,57,87)(52,92,58,86)(53,91,59,85)(54,90,60,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,91,13,76,37,63,50,30),(2,96,14,81,38,68,51,35),(3,89,15,74,39,61,52,28),(4,94,16,79,40,66,53,33),(5,87,17,84,41,71,54,26),(6,92,18,77,42,64,55,31),(7,85,19,82,43,69,56,36),(8,90,20,75,44,62,57,29),(9,95,21,80,45,67,58,34),(10,88,22,73,46,72,59,27),(11,93,23,78,47,65,60,32),(12,86,24,83,48,70,49,25)], [(1,33,7,27),(2,32,8,26),(3,31,9,25),(4,30,10,36),(5,29,11,35),(6,28,12,34),(13,66,19,72),(14,65,20,71),(15,64,21,70),(16,63,22,69),(17,62,23,68),(18,61,24,67),(37,79,43,73),(38,78,44,84),(39,77,45,83),(40,76,46,82),(41,75,47,81),(42,74,48,80),(49,95,55,89),(50,94,56,88),(51,93,57,87),(52,92,58,86),(53,91,59,85),(54,90,60,96)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H6A6B6C6D6E6F6G8A···8H12A···12F
order12222234···44466666668···812···12
size11118822···2242422288886···64···4

36 irreducible representations

dim1111122222222444
type+++++++++++--
imageC1C2C2C2C2S3D4D6D6D8SD16C4oD4C3:D4D4:S3D4.S3D4:2S3
kernelC12.16D8C4xC3:C8D4:Dic3C12:2Q8C3xC4:1D4C4:1D4C2xC12C42C2xD4C12C12C12C2xC4C4C4C4
# reps1141112124444222

Matrix representation of C12.16D8 in GL6(F73)

120000
72720000
0072000
0007200
000080
0000064
,
4600000
0460000
00161600
00571600
000002
0000360
,
27540000
0460000
00575700
00571600
000002
0000370

G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,2,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,8,0,0,0,0,0,0,64],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,16,57,0,0,0,0,16,16,0,0,0,0,0,0,0,36,0,0,0,0,2,0],[27,0,0,0,0,0,54,46,0,0,0,0,0,0,57,57,0,0,0,0,57,16,0,0,0,0,0,0,0,37,0,0,0,0,2,0] >;

C12.16D8 in GAP, Magma, Sage, TeX

C_{12}._{16}D_8
% in TeX

G:=Group("C12.16D8");
// GroupNames label

G:=SmallGroup(192,629);
// by ID

G=gap.SmallGroup(192,629);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,64,590,135,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=1,c^2=a^6,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=a^6*b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<