Copied to
clipboard

G = C4×D4.S3order 192 = 26·3

Direct product of C4 and D4.S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D4.S3, C1211SD16, C42.208D6, C35(C4×SD16), D4.5(C4×S3), (C4×D4).7S3, C6.71(C4×D4), C4⋊C4.245D6, (D4×C12).8C2, (C4×Dic6)⋊19C2, Dic610(C2×C4), (C2×D4).192D6, C6.90(C4○D8), (C2×C12).255D4, C6.52(C2×SD16), C12.52(C4○D4), C4.38(C4○D12), C6.SD1644C2, C12.23(C22×C4), (C4×C12).88C22, C12.Q844C2, (C2×C12).339C23, C2.4(Q8.13D6), D4⋊Dic3.17C2, (C6×D4).234C22, C4⋊Dic3.328C22, (C2×Dic6).264C22, (C4×C3⋊C8)⋊9C2, C3⋊C815(C2×C4), C4.23(S3×C2×C4), C2.17(C4×C3⋊D4), C2.3(C2×D4.S3), (C3×D4).12(C2×C4), (C2×C6).470(C2×D4), (C2×C3⋊C8).245C22, (C2×D4.S3).10C2, C22.77(C2×C3⋊D4), (C2×C4).102(C3⋊D4), (C3×C4⋊C4).276C22, (C2×C4).439(C22×S3), SmallGroup(192,576)

Series: Derived Chief Lower central Upper central

C1C12 — C4×D4.S3
C1C3C6C2×C6C2×C12C2×Dic6C2×D4.S3 — C4×D4.S3
C3C6C12 — C4×D4.S3
C1C2×C4C42C4×D4

Generators and relations for C4×D4.S3
 G = < a,b,c,d,e | a4=b4=c2=d3=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >

Subgroups: 280 in 122 conjugacy classes, 55 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, C12, C12, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D4.S3, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C22×C12, C6×D4, C4×SD16, C4×C3⋊C8, C12.Q8, C6.SD16, D4⋊Dic3, C4×Dic6, C2×D4.S3, D4×C12, C4×D4.S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, SD16, C22×C4, C2×D4, C4○D4, C4×S3, C3⋊D4, C22×S3, C4×D4, C2×SD16, C4○D8, D4.S3, S3×C2×C4, C4○D12, C2×C3⋊D4, C4×SD16, C4×C3⋊D4, C2×D4.S3, Q8.13D6, C4×D4.S3

Smallest permutation representation of C4×D4.S3
On 96 points
Generators in S96
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 33 51 11)(2 34 52 12)(3 35 49 9)(4 36 50 10)(5 44 64 48)(6 41 61 45)(7 42 62 46)(8 43 63 47)(13 80 66 72)(14 77 67 69)(15 78 68 70)(16 79 65 71)(17 31 75 23)(18 32 76 24)(19 29 73 21)(20 30 74 22)(25 82 56 60)(26 83 53 57)(27 84 54 58)(28 81 55 59)(37 92 86 96)(38 89 87 93)(39 90 88 94)(40 91 85 95)
(1 9)(2 10)(3 11)(4 12)(5 42)(6 43)(7 44)(8 41)(13 15)(14 16)(17 29)(18 30)(19 31)(20 32)(21 75)(22 76)(23 73)(24 74)(25 54)(26 55)(27 56)(28 53)(33 49)(34 50)(35 51)(36 52)(37 39)(38 40)(45 63)(46 64)(47 61)(48 62)(57 59)(58 60)(65 67)(66 68)(69 79)(70 80)(71 77)(72 78)(81 83)(82 84)(85 87)(86 88)(89 95)(90 96)(91 93)(92 94)
(1 43 23)(2 44 24)(3 41 21)(4 42 22)(5 76 12)(6 73 9)(7 74 10)(8 75 11)(13 86 60)(14 87 57)(15 88 58)(16 85 59)(17 33 63)(18 34 64)(19 35 61)(20 36 62)(25 80 96)(26 77 93)(27 78 94)(28 79 95)(29 49 45)(30 50 46)(31 51 47)(32 52 48)(37 82 66)(38 83 67)(39 84 68)(40 81 65)(53 69 89)(54 70 90)(55 71 91)(56 72 92)
(1 28 51 55)(2 25 52 56)(3 26 49 53)(4 27 50 54)(5 37 64 86)(6 38 61 87)(7 39 62 88)(8 40 63 85)(9 83 35 57)(10 84 36 58)(11 81 33 59)(12 82 34 60)(13 76 66 18)(14 73 67 19)(15 74 68 20)(16 75 65 17)(21 77 29 69)(22 78 30 70)(23 79 31 71)(24 80 32 72)(41 93 45 89)(42 94 46 90)(43 95 47 91)(44 96 48 92)

G:=sub<Sym(96)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,33,51,11)(2,34,52,12)(3,35,49,9)(4,36,50,10)(5,44,64,48)(6,41,61,45)(7,42,62,46)(8,43,63,47)(13,80,66,72)(14,77,67,69)(15,78,68,70)(16,79,65,71)(17,31,75,23)(18,32,76,24)(19,29,73,21)(20,30,74,22)(25,82,56,60)(26,83,53,57)(27,84,54,58)(28,81,55,59)(37,92,86,96)(38,89,87,93)(39,90,88,94)(40,91,85,95), (1,9)(2,10)(3,11)(4,12)(5,42)(6,43)(7,44)(8,41)(13,15)(14,16)(17,29)(18,30)(19,31)(20,32)(21,75)(22,76)(23,73)(24,74)(25,54)(26,55)(27,56)(28,53)(33,49)(34,50)(35,51)(36,52)(37,39)(38,40)(45,63)(46,64)(47,61)(48,62)(57,59)(58,60)(65,67)(66,68)(69,79)(70,80)(71,77)(72,78)(81,83)(82,84)(85,87)(86,88)(89,95)(90,96)(91,93)(92,94), (1,43,23)(2,44,24)(3,41,21)(4,42,22)(5,76,12)(6,73,9)(7,74,10)(8,75,11)(13,86,60)(14,87,57)(15,88,58)(16,85,59)(17,33,63)(18,34,64)(19,35,61)(20,36,62)(25,80,96)(26,77,93)(27,78,94)(28,79,95)(29,49,45)(30,50,46)(31,51,47)(32,52,48)(37,82,66)(38,83,67)(39,84,68)(40,81,65)(53,69,89)(54,70,90)(55,71,91)(56,72,92), (1,28,51,55)(2,25,52,56)(3,26,49,53)(4,27,50,54)(5,37,64,86)(6,38,61,87)(7,39,62,88)(8,40,63,85)(9,83,35,57)(10,84,36,58)(11,81,33,59)(12,82,34,60)(13,76,66,18)(14,73,67,19)(15,74,68,20)(16,75,65,17)(21,77,29,69)(22,78,30,70)(23,79,31,71)(24,80,32,72)(41,93,45,89)(42,94,46,90)(43,95,47,91)(44,96,48,92)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,33,51,11)(2,34,52,12)(3,35,49,9)(4,36,50,10)(5,44,64,48)(6,41,61,45)(7,42,62,46)(8,43,63,47)(13,80,66,72)(14,77,67,69)(15,78,68,70)(16,79,65,71)(17,31,75,23)(18,32,76,24)(19,29,73,21)(20,30,74,22)(25,82,56,60)(26,83,53,57)(27,84,54,58)(28,81,55,59)(37,92,86,96)(38,89,87,93)(39,90,88,94)(40,91,85,95), (1,9)(2,10)(3,11)(4,12)(5,42)(6,43)(7,44)(8,41)(13,15)(14,16)(17,29)(18,30)(19,31)(20,32)(21,75)(22,76)(23,73)(24,74)(25,54)(26,55)(27,56)(28,53)(33,49)(34,50)(35,51)(36,52)(37,39)(38,40)(45,63)(46,64)(47,61)(48,62)(57,59)(58,60)(65,67)(66,68)(69,79)(70,80)(71,77)(72,78)(81,83)(82,84)(85,87)(86,88)(89,95)(90,96)(91,93)(92,94), (1,43,23)(2,44,24)(3,41,21)(4,42,22)(5,76,12)(6,73,9)(7,74,10)(8,75,11)(13,86,60)(14,87,57)(15,88,58)(16,85,59)(17,33,63)(18,34,64)(19,35,61)(20,36,62)(25,80,96)(26,77,93)(27,78,94)(28,79,95)(29,49,45)(30,50,46)(31,51,47)(32,52,48)(37,82,66)(38,83,67)(39,84,68)(40,81,65)(53,69,89)(54,70,90)(55,71,91)(56,72,92), (1,28,51,55)(2,25,52,56)(3,26,49,53)(4,27,50,54)(5,37,64,86)(6,38,61,87)(7,39,62,88)(8,40,63,85)(9,83,35,57)(10,84,36,58)(11,81,33,59)(12,82,34,60)(13,76,66,18)(14,73,67,19)(15,74,68,20)(16,75,65,17)(21,77,29,69)(22,78,30,70)(23,79,31,71)(24,80,32,72)(41,93,45,89)(42,94,46,90)(43,95,47,91)(44,96,48,92) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,33,51,11),(2,34,52,12),(3,35,49,9),(4,36,50,10),(5,44,64,48),(6,41,61,45),(7,42,62,46),(8,43,63,47),(13,80,66,72),(14,77,67,69),(15,78,68,70),(16,79,65,71),(17,31,75,23),(18,32,76,24),(19,29,73,21),(20,30,74,22),(25,82,56,60),(26,83,53,57),(27,84,54,58),(28,81,55,59),(37,92,86,96),(38,89,87,93),(39,90,88,94),(40,91,85,95)], [(1,9),(2,10),(3,11),(4,12),(5,42),(6,43),(7,44),(8,41),(13,15),(14,16),(17,29),(18,30),(19,31),(20,32),(21,75),(22,76),(23,73),(24,74),(25,54),(26,55),(27,56),(28,53),(33,49),(34,50),(35,51),(36,52),(37,39),(38,40),(45,63),(46,64),(47,61),(48,62),(57,59),(58,60),(65,67),(66,68),(69,79),(70,80),(71,77),(72,78),(81,83),(82,84),(85,87),(86,88),(89,95),(90,96),(91,93),(92,94)], [(1,43,23),(2,44,24),(3,41,21),(4,42,22),(5,76,12),(6,73,9),(7,74,10),(8,75,11),(13,86,60),(14,87,57),(15,88,58),(16,85,59),(17,33,63),(18,34,64),(19,35,61),(20,36,62),(25,80,96),(26,77,93),(27,78,94),(28,79,95),(29,49,45),(30,50,46),(31,51,47),(32,52,48),(37,82,66),(38,83,67),(39,84,68),(40,81,65),(53,69,89),(54,70,90),(55,71,91),(56,72,92)], [(1,28,51,55),(2,25,52,56),(3,26,49,53),(4,27,50,54),(5,37,64,86),(6,38,61,87),(7,39,62,88),(8,40,63,85),(9,83,35,57),(10,84,36,58),(11,81,33,59),(12,82,34,60),(13,76,66,18),(14,73,67,19),(15,74,68,20),(16,75,65,17),(21,77,29,69),(22,78,30,70),(23,79,31,71),(24,80,32,72),(41,93,45,89),(42,94,46,90),(43,95,47,91),(44,96,48,92)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C6D6E6F6G8A···8H12A12B12C12D12E···12L
order12222234444444444444466666668···81212121212···12
size111144211112222441212121222244446···622224···4

48 irreducible representations

dim1111111112222222222244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6SD16C4○D4C3⋊D4C4×S3C4○D8C4○D12D4.S3Q8.13D6
kernelC4×D4.S3C4×C3⋊C8C12.Q8C6.SD16D4⋊Dic3C4×Dic6C2×D4.S3D4×C12D4.S3C4×D4C2×C12C42C4⋊C4C2×D4C12C12C2×C4D4C6C4C4C2
# reps1111111181211142444422

Matrix representation of C4×D4.S3 in GL6(𝔽73)

7200000
0720000
0046000
0004600
0000720
0000072
,
1710000
1720000
0017100
0017200
0000720
0000072
,
1710000
0720000
0072200
000100
0000720
000071
,
100000
010000
001000
000100
0000640
0000238
,
0610000
6700000
0001200
006000
0000353
00001570

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,1,0,0,0,0,71,72,0,0,0,0,0,0,1,1,0,0,0,0,71,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,71,72,0,0,0,0,0,0,72,0,0,0,0,0,2,1,0,0,0,0,0,0,72,7,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,23,0,0,0,0,0,8],[0,67,0,0,0,0,61,0,0,0,0,0,0,0,0,6,0,0,0,0,12,0,0,0,0,0,0,0,3,15,0,0,0,0,53,70] >;

C4×D4.S3 in GAP, Magma, Sage, TeX

C_4\times D_4.S_3
% in TeX

G:=Group("C4xD4.S3");
// GroupNames label

G:=SmallGroup(192,576);
// by ID

G=gap.SmallGroup(192,576);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,58,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^3=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽