Extensions 1→N→G→Q→1 with N=C4 and Q=C6xQ8

Direct product G=NxQ with N=C4 and Q=C6xQ8
dρLabelID
Q8xC2xC12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C4 and Q=C6xQ8
extensionφ:Q→Aut NdρLabelID
C4:1(C6xQ8) = C6xC4:Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4:1(C6xQ8)192,1420
C4:2(C6xQ8) = C3xD4xQ8φ: C6xQ8/C3xQ8C2 ⊆ Aut C496C4:2(C6xQ8)192,1438

Non-split extensions G=N.Q with N=C4 and Q=C6xQ8
extensionφ:Q→Aut NdρLabelID
C4.1(C6xQ8) = C6xC4.Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.1(C6xQ8)192,858
C4.2(C6xQ8) = C6xC2.D8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.2(C6xQ8)192,859
C4.3(C6xQ8) = C3xC23.25D4φ: C6xQ8/C2xC12C2 ⊆ Aut C496C4.3(C6xQ8)192,860
C4.4(C6xQ8) = C3xM4(2):C4φ: C6xQ8/C2xC12C2 ⊆ Aut C496C4.4(C6xQ8)192,861
C4.5(C6xQ8) = C3xC8:3Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.5(C6xQ8)192,931
C4.6(C6xQ8) = C3xC8.5Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.6(C6xQ8)192,932
C4.7(C6xQ8) = C3xC8:2Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.7(C6xQ8)192,933
C4.8(C6xQ8) = C3xC8:Q8φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.8(C6xQ8)192,934
C4.9(C6xQ8) = C6xC42.C2φ: C6xQ8/C2xC12C2 ⊆ Aut C4192C4.9(C6xQ8)192,1416
C4.10(C6xQ8) = C3xC23.37C23φ: C6xQ8/C2xC12C2 ⊆ Aut C496C4.10(C6xQ8)192,1422
C4.11(C6xQ8) = C3xC23.41C23φ: C6xQ8/C2xC12C2 ⊆ Aut C496C4.11(C6xQ8)192,1433
C4.12(C6xQ8) = C3xD4:Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C496C4.12(C6xQ8)192,907
C4.13(C6xQ8) = C3xQ8:Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C4192C4.13(C6xQ8)192,908
C4.14(C6xQ8) = C3xD4:2Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C496C4.14(C6xQ8)192,909
C4.15(C6xQ8) = C3xC4.Q16φ: C6xQ8/C3xQ8C2 ⊆ Aut C4192C4.15(C6xQ8)192,910
C4.16(C6xQ8) = C3xD4.Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C496C4.16(C6xQ8)192,911
C4.17(C6xQ8) = C3xQ8.Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C4192C4.17(C6xQ8)192,912
C4.18(C6xQ8) = C3xD4:3Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C496C4.18(C6xQ8)192,1443
C4.19(C6xQ8) = C3xQ8:3Q8φ: C6xQ8/C3xQ8C2 ⊆ Aut C4192C4.19(C6xQ8)192,1446
C4.20(C6xQ8) = C3xQ82φ: C6xQ8/C3xQ8C2 ⊆ Aut C4192C4.20(C6xQ8)192,1447
C4.21(C6xQ8) = C6xC4:C8central extension (φ=1)192C4.21(C6xQ8)192,855
C4.22(C6xQ8) = C3xC4:M4(2)central extension (φ=1)96C4.22(C6xQ8)192,856
C4.23(C6xQ8) = C3xC42.6C22central extension (φ=1)96C4.23(C6xQ8)192,857
C4.24(C6xQ8) = Q8xC24central extension (φ=1)192C4.24(C6xQ8)192,878
C4.25(C6xQ8) = C3xC8:4Q8central extension (φ=1)192C4.25(C6xQ8)192,879

׿
x
:
Z
F
o
wr
Q
<