Extensions 1→N→G→Q→1 with N=C3xC4oD4 and Q=C4

Direct product G=NxQ with N=C3xC4oD4 and Q=C4
dρLabelID
C12xC4oD496C12xC4oD4192,1406

Semidirect products G=N:Q with N=C3xC4oD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC4oD4):1C4 = C4oD4:3Dic3φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):1C4192,791
(C3xC4oD4):2C4 = C4oD4:4Dic3φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):2C4192,792
(C3xC4oD4):3C4 = C2xQ8:3Dic3φ: C4/C2C2 ⊆ Out C3xC4oD448(C3xC4oD4):3C4192,794
(C3xC4oD4):4C4 = (C6xD4):9C4φ: C4/C2C2 ⊆ Out C3xC4oD4484(C3xC4oD4):4C4192,795
(C3xC4oD4):5C4 = Dic3xC4oD4φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):5C4192,1385
(C3xC4oD4):6C4 = C6.1442+ 1+4φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):6C4192,1386
(C3xC4oD4):7C4 = C3xC23.24D4φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):7C4192,849
(C3xC4oD4):8C4 = C3xC23.36D4φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):8C4192,850
(C3xC4oD4):9C4 = C6xC4wrC2φ: C4/C2C2 ⊆ Out C3xC4oD448(C3xC4oD4):9C4192,853
(C3xC4oD4):10C4 = C3xC42:C22φ: C4/C2C2 ⊆ Out C3xC4oD4484(C3xC4oD4):10C4192,854
(C3xC4oD4):11C4 = C3xC23.33C23φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4):11C4192,1409

Non-split extensions G=N.Q with N=C3xC4oD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xC4oD4).1C4 = C24.99D4φ: C4/C2C2 ⊆ Out C3xC4oD4964(C3xC4oD4).1C4192,120
(C3xC4oD4).2C4 = C24.78C23φ: C4/C2C2 ⊆ Out C3xC4oD4964(C3xC4oD4).2C4192,699
(C3xC4oD4).3C4 = C2xD4.Dic3φ: C4/C2C2 ⊆ Out C3xC4oD496(C3xC4oD4).3C4192,1377
(C3xC4oD4).4C4 = C12.76C24φ: C4/C2C2 ⊆ Out C3xC4oD4484(C3xC4oD4).4C4192,1378
(C3xC4oD4).5C4 = C3xD4.C8φ: C4/C2C2 ⊆ Out C3xC4oD4962(C3xC4oD4).5C4192,156
(C3xC4oD4).6C4 = C3xQ8oM4(2)φ: C4/C2C2 ⊆ Out C3xC4oD4484(C3xC4oD4).6C4192,1457
(C3xC4oD4).7C4 = C3xD4oC16φ: trivial image962(C3xC4oD4).7C4192,937
(C3xC4oD4).8C4 = C6xC8oD4φ: trivial image96(C3xC4oD4).8C4192,1456

׿
x
:
Z
F
o
wr
Q
<