# Extensions 1→N→G→Q→1 with N=C4 and Q=C22×A4

Direct product G=N×Q with N=C4 and Q=C22×A4
dρLabelID
A4×C22×C448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C4 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×A4) = C2×D4×A4φ: C22×A4/C2×A4C2 ⊆ Aut C424C4:(C2^2xA4)192,1497

Non-split extensions G=N.Q with N=C4 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C4.1(C22×A4) = A4×D8φ: C22×A4/C2×A4C2 ⊆ Aut C4246+C4.1(C2^2xA4)192,1014
C4.2(C22×A4) = A4×SD16φ: C22×A4/C2×A4C2 ⊆ Aut C4246C4.2(C2^2xA4)192,1015
C4.3(C22×A4) = A4×Q16φ: C22×A4/C2×A4C2 ⊆ Aut C4486-C4.3(C2^2xA4)192,1016
C4.4(C22×A4) = Q16.A4φ: C22×A4/C2×A4C2 ⊆ Aut C4484+C4.4(C2^2xA4)192,1017
C4.5(C22×A4) = SD16.A4φ: C22×A4/C2×A4C2 ⊆ Aut C4324C4.5(C2^2xA4)192,1018
C4.6(C22×A4) = D8.A4φ: C22×A4/C2×A4C2 ⊆ Aut C4324-C4.6(C2^2xA4)192,1019
C4.7(C22×A4) = C2×Q8×A4φ: C22×A4/C2×A4C2 ⊆ Aut C448C4.7(C2^2xA4)192,1499
C4.8(C22×A4) = A4×C4○D4φ: C22×A4/C2×A4C2 ⊆ Aut C4246C4.8(C2^2xA4)192,1501
C4.9(C22×A4) = C2×Q8.A4φ: C22×A4/C2×A4C2 ⊆ Aut C448C4.9(C2^2xA4)192,1502
C4.10(C22×A4) = C2×D4.A4φ: C22×A4/C2×A4C2 ⊆ Aut C432C4.10(C2^2xA4)192,1503
C4.11(C22×A4) = 2- 1+43C6φ: C22×A4/C2×A4C2 ⊆ Aut C4324C4.11(C2^2xA4)192,1504
C4.12(C22×A4) = A4×C2×C8central extension (φ=1)48C4.12(C2^2xA4)192,1010
C4.13(C22×A4) = A4×M4(2)central extension (φ=1)246C4.13(C2^2xA4)192,1011
C4.14(C22×A4) = C2×C8.A4central extension (φ=1)64C4.14(C2^2xA4)192,1012
C4.15(C22×A4) = M4(2).A4central extension (φ=1)324C4.15(C2^2xA4)192,1013
C4.16(C22×A4) = C22×C4.A4central extension (φ=1)64C4.16(C2^2xA4)192,1500

׿
×
𝔽