Copied to
clipboard

G = C2xD4xA4order 192 = 26·3

Direct product of C2, D4 and A4

direct product, metabelian, soluble, monomial

Aliases: C2xD4xA4, C25:2C6, C4:(C22xA4), C22:(C6xD4), (D4xC23):C3, C23:4(C2xA4), (C23xC4):2C6, C24:3(C2xC6), C23:4(C3xD4), (C4xA4):4C22, (C23xA4):1C2, (C22xD4):2C6, C2.2(C23xA4), C22:2(C22xA4), (C2xA4).12C23, (C22xA4):2C22, C23.29(C22xC6), (C2xC4xA4):6C2, (C2xC4):2(C2xA4), (C22xC4):(C2xC6), SmallGroup(192,1497)

Series: Derived Chief Lower central Upper central

C1C23 — C2xD4xA4
C1C22C23C2xA4C22xA4C23xA4 — C2xD4xA4
C22C23 — C2xD4xA4
C1C22C2xD4

Generators and relations for C2xD4xA4
 G = < a,b,c,d,e,f | a2=b4=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 1112 in 317 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C2xC4, C2xC4, D4, D4, C23, C23, C23, C12, A4, C2xC6, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C24, C2xC12, C3xD4, C2xA4, C2xA4, C2xA4, C22xC6, C23xC4, C22xD4, C22xD4, C25, C4xA4, C6xD4, C22xA4, C22xA4, C22xA4, D4xC23, C2xC4xA4, D4xA4, C23xA4, C2xD4xA4
Quotients: C1, C2, C3, C22, C6, D4, C23, A4, C2xC6, C2xD4, C3xD4, C2xA4, C22xC6, C6xD4, C22xA4, D4xA4, C23xA4, C2xD4xA4

Permutation representations of C2xD4xA4
On 24 points - transitive group 24T411
Generators in S24
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 24)(22 23)
(1 3)(2 4)(5 14)(6 15)(7 16)(8 13)(9 11)(10 12)(17 21)(18 22)(19 23)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 7)(6 8)(13 15)(14 16)(17 23)(18 24)(19 21)(20 22)
(1 7 19)(2 8 20)(3 5 17)(4 6 18)(9 16 21)(10 13 22)(11 14 23)(12 15 24)

G:=sub<Sym(24)| (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23), (1,3)(2,4)(5,14)(6,15)(7,16)(8,13)(9,11)(10,12)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,23)(18,24)(19,21)(20,22), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,21)(10,13,22)(11,14,23)(12,15,24)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23), (1,3)(2,4)(5,14)(6,15)(7,16)(8,13)(9,11)(10,12)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,23)(18,24)(19,21)(20,22), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,21)(10,13,22)(11,14,23)(12,15,24) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,24),(22,23)], [(1,3),(2,4),(5,14),(6,15),(7,16),(8,13),(9,11),(10,12),(17,21),(18,22),(19,23),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,7),(6,8),(13,15),(14,16),(17,23),(18,24),(19,21),(20,22)], [(1,7,19),(2,8,20),(3,5,17),(4,6,18),(9,16,21),(10,13,22),(11,14,23),(12,15,24)]])

G:=TransitiveGroup(24,411);

On 24 points - transitive group 24T412
Generators in S24
(1 6)(2 7)(3 8)(4 5)(9 14)(10 15)(11 16)(12 13)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 5)(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(12 16)(17 24)(18 23)(19 22)(20 21)
(9 14)(10 15)(11 16)(12 13)(17 21)(18 22)(19 23)(20 24)
(1 6)(2 7)(3 8)(4 5)(17 21)(18 22)(19 23)(20 24)
(1 15 23)(2 16 24)(3 13 21)(4 14 22)(5 9 18)(6 10 19)(7 11 20)(8 12 17)

G:=sub<Sym(24)| (1,6)(2,7)(3,8)(4,5)(9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16)(17,24)(18,23)(19,22)(20,21), (9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,6)(2,7)(3,8)(4,5)(17,21)(18,22)(19,23)(20,24), (1,15,23)(2,16,24)(3,13,21)(4,14,22)(5,9,18)(6,10,19)(7,11,20)(8,12,17)>;

G:=Group( (1,6)(2,7)(3,8)(4,5)(9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16)(17,24)(18,23)(19,22)(20,21), (9,14)(10,15)(11,16)(12,13)(17,21)(18,22)(19,23)(20,24), (1,6)(2,7)(3,8)(4,5)(17,21)(18,22)(19,23)(20,24), (1,15,23)(2,16,24)(3,13,21)(4,14,22)(5,9,18)(6,10,19)(7,11,20)(8,12,17) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,5),(9,14),(10,15),(11,16),(12,13),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,5),(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(12,16),(17,24),(18,23),(19,22),(20,21)], [(9,14),(10,15),(11,16),(12,13),(17,21),(18,22),(19,23),(20,24)], [(1,6),(2,7),(3,8),(4,5),(17,21),(18,22),(19,23),(20,24)], [(1,15,23),(2,16,24),(3,13,21),(4,14,22),(5,9,18),(6,10,19),(7,11,20),(8,12,17)]])

G:=TransitiveGroup(24,412);

On 24 points - transitive group 24T413
Generators in S24
(1 21)(2 22)(3 23)(4 24)(5 15)(6 16)(7 13)(8 14)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(22 24)
(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 3)(2 4)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)
(1 14 11)(2 15 12)(3 16 9)(4 13 10)(5 20 22)(6 17 23)(7 18 24)(8 19 21)

G:=sub<Sym(24)| (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (1,14,11)(2,15,12)(3,16,9)(4,13,10)(5,20,22)(6,17,23)(7,18,24)(8,19,21)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(22,24), (5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24), (1,14,11)(2,15,12)(3,16,9)(4,13,10)(5,20,22)(6,17,23)(7,18,24)(8,19,21) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,15),(6,16),(7,13),(8,14),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(22,24)], [(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,3),(2,4),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24)], [(1,14,11),(2,15,12),(3,16,9),(4,13,10),(5,20,22),(6,17,23),(7,18,24),(8,19,21)]])

G:=TransitiveGroup(24,413);

40 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O3A3B4A4B4C4D6A···6F6G···6N12A12B12C12D
order12222222222222223344446···66···612121212
size11112222333366664422664···48···88888

40 irreducible representations

dim111111112233336
type++++++++++
imageC1C2C2C2C3C6C6C6D4C3xD4A4C2xA4C2xA4C2xA4D4xA4
kernelC2xD4xA4C2xC4xA4D4xA4C23xA4D4xC23C23xC4C22xD4C25C2xA4C23C2xD4C2xC4D4C23C2
# reps114222842411422

Matrix representation of C2xD4xA4 in GL7(F13)

1000000
0100000
00120000
00012000
0000100
0000010
0000001
,
0100000
12000000
0001000
00120000
0000100
0000010
0000001
,
0100000
1000000
00012000
00120000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00001200
00000120
0000001
,
1000000
0100000
0010000
0001000
0000100
00000120
00000012
,
1000000
0100000
0030000
0003000
0000001
00001200
00000120

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0] >;

C2xD4xA4 in GAP, Magma, Sage, TeX

C_2\times D_4\times A_4
% in TeX

G:=Group("C2xD4xA4");
// GroupNames label

G:=SmallGroup(192,1497);
// by ID

G=gap.SmallGroup(192,1497);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,2,303,530,909]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<