Extensions 1→N→G→Q→1 with N=C4 and Q=D24

Direct product G=N×Q with N=C4 and Q=D24
dρLabelID
C4×D2496C4xD24192,251

Semidirect products G=N:Q with N=C4 and Q=D24
extensionφ:Q→Aut NdρLabelID
C41D24 = C124D8φ: D24/C24C2 ⊆ Aut C496C4:1D24192,254
C42D24 = C4⋊D24φ: D24/D12C2 ⊆ Aut C496C4:2D24192,402

Non-split extensions G=N.Q with N=C4 and Q=D24
extensionφ:Q→Aut NdρLabelID
C4.1D24 = D96φ: D24/C24C2 ⊆ Aut C4962+C4.1D24192,7
C4.2D24 = C32⋊S3φ: D24/C24C2 ⊆ Aut C4962C4.2D24192,8
C4.3D24 = Dic48φ: D24/C24C2 ⊆ Aut C41922-C4.3D24192,9
C4.4D24 = C248Q8φ: D24/C24C2 ⊆ Aut C4192C4.4D24192,241
C4.5D24 = C4.5D24φ: D24/C24C2 ⊆ Aut C496C4.5D24192,253
C4.6D24 = C2×D48φ: D24/C24C2 ⊆ Aut C496C4.6D24192,461
C4.7D24 = C2×C48⋊C2φ: D24/C24C2 ⊆ Aut C496C4.7D24192,462
C4.8D24 = C2×Dic24φ: D24/C24C2 ⊆ Aut C4192C4.8D24192,464
C4.9D24 = C4.D24φ: D24/D12C2 ⊆ Aut C496C4.9D24192,44
C4.10D24 = C12.2D8φ: D24/D12C2 ⊆ Aut C4192C4.10D24192,45
C4.11D24 = M5(2)⋊S3φ: D24/D12C2 ⊆ Aut C4484+C4.11D24192,75
C4.12D24 = C12.4D8φ: D24/D12C2 ⊆ Aut C4964-C4.12D24192,76
C4.13D24 = D124Q8φ: D24/D12C2 ⊆ Aut C496C4.13D24192,405
C4.14D24 = C16⋊D6φ: D24/D12C2 ⊆ Aut C4484+C4.14D24192,467
C4.15D24 = C16.D6φ: D24/D12C2 ⊆ Aut C4964-C4.15D24192,468
C4.16D24 = C241C8central extension (φ=1)192C4.16D24192,17
C4.17D24 = C4.17D24central extension (φ=1)96C4.17D24192,18
C4.18D24 = C48.C4central extension (φ=1)962C4.18D24192,65
C4.19D24 = D24.1C4central extension (φ=1)962C4.19D24192,69
C4.20D24 = D487C2central extension (φ=1)962C4.20D24192,463

׿
×
𝔽