Copied to
clipboard

G = C4.17D24order 192 = 26·3

2nd central extension by C4 of D24

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D121C8, C12.35D8, C4.17D24, C12.29SD16, C42.249D6, C12.13M4(2), (C4×C8)⋊1S3, C6.4C4≀C2, (C4×C24)⋊1C2, C31(D4⋊C8), C4.7(S3×C8), C12⋊C81C2, C12.17(C2×C8), C2.4(D6⋊C8), (C2×D12).5C4, (C4×D12).1C2, C4⋊Dic3.5C4, C4.5(C8⋊S3), (C2×C12).436D4, (C2×C4).161D12, C6.2(C22⋊C8), C4.16(C24⋊C2), C2.1(C2.D24), C6.10(D4⋊C4), C2.2(C424S3), (C4×C12).320C22, C22.31(D6⋊C4), (C2×C4).96(C4×S3), (C2×C12).216(C2×C4), (C2×C4).205(C3⋊D4), (C2×C6).36(C22⋊C4), SmallGroup(192,18)

Series: Derived Chief Lower central Upper central

C1C12 — C4.17D24
C1C3C6C2×C6C2×C12C4×C12C4×D12 — C4.17D24
C3C6C12 — C4.17D24
C1C2×C4C42C4×C8

Generators and relations for C4.17D24
 G = < a,b,c | a4=b24=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >

Subgroups: 264 in 82 conjugacy classes, 35 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, C4⋊C8, C4×D4, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, D4⋊C8, C12⋊C8, C4×C24, C4×D12, C4.17D24
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C22⋊C4, C2×C8, M4(2), D8, SD16, C4×S3, D12, C3⋊D4, C22⋊C8, D4⋊C4, C4≀C2, S3×C8, C8⋊S3, C24⋊C2, D24, D6⋊C4, D4⋊C8, C424S3, D6⋊C8, C2.D24, C4.17D24

Smallest permutation representation of C4.17D24
On 96 points
Generators in S96
(1 54 39 96)(2 55 40 73)(3 56 41 74)(4 57 42 75)(5 58 43 76)(6 59 44 77)(7 60 45 78)(8 61 46 79)(9 62 47 80)(10 63 48 81)(11 64 25 82)(12 65 26 83)(13 66 27 84)(14 67 28 85)(15 68 29 86)(16 69 30 87)(17 70 31 88)(18 71 32 89)(19 72 33 90)(20 49 34 91)(21 50 35 92)(22 51 36 93)(23 52 37 94)(24 53 38 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 53 54 38 39 95 96 24)(2 37 55 94 40 23 73 52)(3 93 56 22 41 51 74 36)(4 21 57 50 42 35 75 92)(5 49 58 34 43 91 76 20)(6 33 59 90 44 19 77 72)(7 89 60 18 45 71 78 32)(8 17 61 70 46 31 79 88)(9 69 62 30 47 87 80 16)(10 29 63 86 48 15 81 68)(11 85 64 14 25 67 82 28)(12 13 65 66 26 27 83 84)

G:=sub<Sym(96)| (1,54,39,96)(2,55,40,73)(3,56,41,74)(4,57,42,75)(5,58,43,76)(6,59,44,77)(7,60,45,78)(8,61,46,79)(9,62,47,80)(10,63,48,81)(11,64,25,82)(12,65,26,83)(13,66,27,84)(14,67,28,85)(15,68,29,86)(16,69,30,87)(17,70,31,88)(18,71,32,89)(19,72,33,90)(20,49,34,91)(21,50,35,92)(22,51,36,93)(23,52,37,94)(24,53,38,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,54,38,39,95,96,24)(2,37,55,94,40,23,73,52)(3,93,56,22,41,51,74,36)(4,21,57,50,42,35,75,92)(5,49,58,34,43,91,76,20)(6,33,59,90,44,19,77,72)(7,89,60,18,45,71,78,32)(8,17,61,70,46,31,79,88)(9,69,62,30,47,87,80,16)(10,29,63,86,48,15,81,68)(11,85,64,14,25,67,82,28)(12,13,65,66,26,27,83,84)>;

G:=Group( (1,54,39,96)(2,55,40,73)(3,56,41,74)(4,57,42,75)(5,58,43,76)(6,59,44,77)(7,60,45,78)(8,61,46,79)(9,62,47,80)(10,63,48,81)(11,64,25,82)(12,65,26,83)(13,66,27,84)(14,67,28,85)(15,68,29,86)(16,69,30,87)(17,70,31,88)(18,71,32,89)(19,72,33,90)(20,49,34,91)(21,50,35,92)(22,51,36,93)(23,52,37,94)(24,53,38,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,53,54,38,39,95,96,24)(2,37,55,94,40,23,73,52)(3,93,56,22,41,51,74,36)(4,21,57,50,42,35,75,92)(5,49,58,34,43,91,76,20)(6,33,59,90,44,19,77,72)(7,89,60,18,45,71,78,32)(8,17,61,70,46,31,79,88)(9,69,62,30,47,87,80,16)(10,29,63,86,48,15,81,68)(11,85,64,14,25,67,82,28)(12,13,65,66,26,27,83,84) );

G=PermutationGroup([[(1,54,39,96),(2,55,40,73),(3,56,41,74),(4,57,42,75),(5,58,43,76),(6,59,44,77),(7,60,45,78),(8,61,46,79),(9,62,47,80),(10,63,48,81),(11,64,25,82),(12,65,26,83),(13,66,27,84),(14,67,28,85),(15,68,29,86),(16,69,30,87),(17,70,31,88),(18,71,32,89),(19,72,33,90),(20,49,34,91),(21,50,35,92),(22,51,36,93),(23,52,37,94),(24,53,38,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,53,54,38,39,95,96,24),(2,37,55,94,40,23,73,52),(3,93,56,22,41,51,74,36),(4,21,57,50,42,35,75,92),(5,49,58,34,43,91,76,20),(6,33,59,90,44,19,77,72),(7,89,60,18,45,71,78,32),(8,17,61,70,46,31,79,88),(9,69,62,30,47,87,80,16),(10,29,63,86,48,15,81,68),(11,85,64,14,25,67,82,28),(12,13,65,66,26,27,83,84)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A···8H8I8J8K8L12A···12L24A···24P
order122222344444444446668···8888812···1224···24
size1111121221111222212122222···2121212122···22···2

60 irreducible representations

dim1111111222222222222222
type++++++++++
imageC1C2C2C2C4C4C8S3D4D6M4(2)D8SD16C4×S3D12C3⋊D4C4≀C2S3×C8C8⋊S3C24⋊C2D24C424S3
kernelC4.17D24C12⋊C8C4×C24C4×D12C4⋊Dic3C2×D12D12C4×C8C2×C12C42C12C12C12C2×C4C2×C4C2×C4C6C4C4C4C4C2
# reps1111228121222222444448

Matrix representation of C4.17D24 in GL3(𝔽73) generated by

2700
0460
0046
,
6300
04268
0537
,
1000
0537
04268
G:=sub<GL(3,GF(73))| [27,0,0,0,46,0,0,0,46],[63,0,0,0,42,5,0,68,37],[10,0,0,0,5,42,0,37,68] >;

C4.17D24 in GAP, Magma, Sage, TeX

C_4._{17}D_{24}
% in TeX

G:=Group("C4.17D24");
// GroupNames label

G:=SmallGroup(192,18);
// by ID

G=gap.SmallGroup(192,18);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,85,92,422,100,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^4=b^24=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations

׿
×
𝔽