Extensions 1→N→G→Q→1 with N=C2 and Q=C4×D12

Direct product G=N×Q with N=C2 and Q=C4×D12
dρLabelID
C2×C4×D1296C2xC4xD12192,1032


Non-split extensions G=N.Q with N=C2 and Q=C4×D12
extensionφ:Q→Aut NdρLabelID
C2.1(C4×D12) = C8×D12central extension (φ=1)96C2.1(C4xD12)192,245
C2.2(C4×D12) = C4×C4⋊Dic3central extension (φ=1)192C2.2(C4xD12)192,493
C2.3(C4×D12) = C4×D6⋊C4central extension (φ=1)96C2.3(C4xD12)192,497
C2.4(C4×D12) = C2.(C4×D12)central stem extension (φ=1)192C2.4(C4xD12)192,212
C2.5(C4×D12) = (C2×C4)⋊9D12central stem extension (φ=1)96C2.5(C4xD12)192,224
C2.6(C4×D12) = D6⋊C4⋊C4central stem extension (φ=1)96C2.6(C4xD12)192,227
C2.7(C4×D12) = D6⋊C43C4central stem extension (φ=1)96C2.7(C4xD12)192,229
C2.8(C4×D12) = C86D12central stem extension (φ=1)96C2.8(C4xD12)192,247
C2.9(C4×D12) = C4×C24⋊C2central stem extension (φ=1)96C2.9(C4xD12)192,250
C2.10(C4×D12) = C4×D24central stem extension (φ=1)96C2.10(C4xD12)192,251
C2.11(C4×D12) = C4×Dic12central stem extension (φ=1)192C2.11(C4xD12)192,257
C2.12(C4×D12) = D2411C4central stem extension (φ=1)482C2.12(C4xD12)192,259
C2.13(C4×D12) = C89D12central stem extension (φ=1)96C2.13(C4xD12)192,265
C2.14(C4×D12) = C42.16D6central stem extension (φ=1)96C2.14(C4xD12)192,269
C2.15(C4×D12) = D24⋊C4central stem extension (φ=1)96C2.15(C4xD12)192,270
C2.16(C4×D12) = Dic12⋊C4central stem extension (φ=1)192C2.16(C4xD12)192,275
C2.17(C4×D12) = D244C4central stem extension (φ=1)484C2.17(C4xD12)192,276
C2.18(C4×D12) = C124(C4⋊C4)central stem extension (φ=1)192C2.18(C4xD12)192,487
C2.19(C4×D12) = (C2×C4)⋊6D12central stem extension (φ=1)96C2.19(C4xD12)192,498
C2.20(C4×D12) = (C2×C42)⋊3S3central stem extension (φ=1)96C2.20(C4xD12)192,499

׿
×
𝔽