Copied to
clipboard

G = C4×C24⋊C2order 192 = 26·3

Direct product of C4 and C24⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C24⋊C2, C128SD16, C42.258D6, C811(C4×S3), (C4×C8)⋊11S3, C6.6(C4×D4), C31(C4×SD16), (C4×C24)⋊16C2, C2423(C2×C4), C2.9(C4×D12), Dic68(C2×C4), (C4×Dic6)⋊1C2, (C4×D12).3C2, C8⋊Dic328C2, C6.2(C4○D8), (C2×C8).285D6, (C2×C4).60D12, C6.3(C2×SD16), D12.12(C2×C4), C2.1(C4○D24), (C2×C12).350D4, C2.Dic1243C2, C2.D24.17C2, C22.27(C2×D12), C12.216(C4○D4), C4.100(C4○D12), (C2×C24).345C22, (C2×C12).720C23, C12.101(C22×C4), (C4×C12).325C22, (C2×D12).187C22, C4⋊Dic3.262C22, (C2×Dic6).206C22, C4.59(S3×C2×C4), C2.1(C2×C24⋊C2), (C2×C6).103(C2×D4), (C2×C24⋊C2).10C2, (C2×C4).663(C22×S3), SmallGroup(192,250)

Series: Derived Chief Lower central Upper central

C1C12 — C4×C24⋊C2
C1C3C6C2×C6C2×C12C2×D12C2×C24⋊C2 — C4×C24⋊C2
C3C6C12 — C4×C24⋊C2
C1C2×C4C42C4×C8

Generators and relations for C4×C24⋊C2
 G = < a,b,c | a4=b24=c2=1, ab=ba, ac=ca, cbc=b11 >

Subgroups: 360 in 122 conjugacy classes, 55 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C24⋊C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C4×SD16, C2.Dic12, C8⋊Dic3, C2.D24, C4×C24, C4×Dic6, C4×D12, C2×C24⋊C2, C4×C24⋊C2
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, SD16, C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, C2×SD16, C4○D8, C24⋊C2, S3×C2×C4, C2×D12, C4○D12, C4×SD16, C4×D12, C2×C24⋊C2, C4○D24, C4×C24⋊C2

Smallest permutation representation of C4×C24⋊C2
On 96 points
Generators in S96
(1 30 51 86)(2 31 52 87)(3 32 53 88)(4 33 54 89)(5 34 55 90)(6 35 56 91)(7 36 57 92)(8 37 58 93)(9 38 59 94)(10 39 60 95)(11 40 61 96)(12 41 62 73)(13 42 63 74)(14 43 64 75)(15 44 65 76)(16 45 66 77)(17 46 67 78)(18 47 68 79)(19 48 69 80)(20 25 70 81)(21 26 71 82)(22 27 72 83)(23 28 49 84)(24 29 50 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 47)(26 34)(27 45)(28 32)(29 43)(31 41)(33 39)(35 37)(36 48)(38 46)(40 44)(49 53)(50 64)(52 62)(54 60)(55 71)(56 58)(57 69)(59 67)(61 65)(66 72)(68 70)(73 87)(75 85)(76 96)(77 83)(78 94)(79 81)(80 92)(82 90)(84 88)(89 95)(91 93)

G:=sub<Sym(96)| (1,30,51,86)(2,31,52,87)(3,32,53,88)(4,33,54,89)(5,34,55,90)(6,35,56,91)(7,36,57,92)(8,37,58,93)(9,38,59,94)(10,39,60,95)(11,40,61,96)(12,41,62,73)(13,42,63,74)(14,43,64,75)(15,44,65,76)(16,45,66,77)(17,46,67,78)(18,47,68,79)(19,48,69,80)(20,25,70,81)(21,26,71,82)(22,27,72,83)(23,28,49,84)(24,29,50,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,47)(26,34)(27,45)(28,32)(29,43)(31,41)(33,39)(35,37)(36,48)(38,46)(40,44)(49,53)(50,64)(52,62)(54,60)(55,71)(56,58)(57,69)(59,67)(61,65)(66,72)(68,70)(73,87)(75,85)(76,96)(77,83)(78,94)(79,81)(80,92)(82,90)(84,88)(89,95)(91,93)>;

G:=Group( (1,30,51,86)(2,31,52,87)(3,32,53,88)(4,33,54,89)(5,34,55,90)(6,35,56,91)(7,36,57,92)(8,37,58,93)(9,38,59,94)(10,39,60,95)(11,40,61,96)(12,41,62,73)(13,42,63,74)(14,43,64,75)(15,44,65,76)(16,45,66,77)(17,46,67,78)(18,47,68,79)(19,48,69,80)(20,25,70,81)(21,26,71,82)(22,27,72,83)(23,28,49,84)(24,29,50,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,47)(26,34)(27,45)(28,32)(29,43)(31,41)(33,39)(35,37)(36,48)(38,46)(40,44)(49,53)(50,64)(52,62)(54,60)(55,71)(56,58)(57,69)(59,67)(61,65)(66,72)(68,70)(73,87)(75,85)(76,96)(77,83)(78,94)(79,81)(80,92)(82,90)(84,88)(89,95)(91,93) );

G=PermutationGroup([[(1,30,51,86),(2,31,52,87),(3,32,53,88),(4,33,54,89),(5,34,55,90),(6,35,56,91),(7,36,57,92),(8,37,58,93),(9,38,59,94),(10,39,60,95),(11,40,61,96),(12,41,62,73),(13,42,63,74),(14,43,64,75),(15,44,65,76),(16,45,66,77),(17,46,67,78),(18,47,68,79),(19,48,69,80),(20,25,70,81),(21,26,71,82),(22,27,72,83),(23,28,49,84),(24,29,50,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,47),(26,34),(27,45),(28,32),(29,43),(31,41),(33,39),(35,37),(36,48),(38,46),(40,44),(49,53),(50,64),(52,62),(54,60),(55,71),(56,58),(57,69),(59,67),(61,65),(66,72),(68,70),(73,87),(75,85),(76,96),(77,83),(78,94),(79,81),(80,92),(82,90),(84,88),(89,95),(91,93)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I···4N6A6B6C8A···8H12A···12L24A···24P
order1222223444444444···46668···812···1224···24
size1111121221111222212···122222···22···22···2

60 irreducible representations

dim111111111222222222222
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D6D6SD16C4○D4C4×S3D12C4○D8C24⋊C2C4○D12C4○D24
kernelC4×C24⋊C2C2.Dic12C8⋊Dic3C2.D24C4×C24C4×Dic6C4×D12C2×C24⋊C2C24⋊C2C4×C8C2×C12C42C2×C8C12C12C8C2×C4C6C4C4C2
# reps111111118121242444848

Matrix representation of C4×C24⋊C2 in GL3(𝔽73) generated by

4600
0270
0027
,
100
06237
03625
,
7200
010
07272
G:=sub<GL(3,GF(73))| [46,0,0,0,27,0,0,0,27],[1,0,0,0,62,36,0,37,25],[72,0,0,0,1,72,0,0,72] >;

C4×C24⋊C2 in GAP, Magma, Sage, TeX

C_4\times C_{24}\rtimes C_2
% in TeX

G:=Group("C4xC24:C2");
// GroupNames label

G:=SmallGroup(192,250);
// by ID

G=gap.SmallGroup(192,250);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,58,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^4=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^11>;
// generators/relations

׿
×
𝔽